
i3D: Interactive Planar Reconstruction
of Objects and Scenes

Adarsh Kowdle

apk64@cornell.edu
Cornell University

Yao-Jen Chang

yc682@cornell.edu
Cornell University

Tsuhan Chen

tsuhan@ece.cornell.edu
Cornell University

ABSTRACT

3D reconstruction from 2D images is an active research topic in
the computer vision community. Classical algorithms like Structure
From Motion (SFM) and Multi-View Stereo (MVS) are known to
provide a robust framework for reconstruction, but fail to produce a
dense plausible reconstruction. Some recent works have shown that
making planar approximations of the scene help obtain more com-
plete and visually pleasing results albeit, still approximate. However,
many of these algorithms depend on image level cues like strong
edges and lines which may be absent in textureless scenes. This has
led to interactive 3D reconstruction algorithms.

In this work, we present i3D, an interactive planar reconstruction
algorithm. In our proposed system, we make planar approximations
of the scene and with the help of user interactions, reconstruct the
scene given as few as five to ten images from varied poses. As op-
posed to other more involved interactive algorithms which require
the user to provide plane boundaries and line models of the scene,
we relax this requirement to mere scribbles on an image to indicate
the surfaces. Preliminary results show that these simple interactions
can help obtain complete and visually pleasing reconstructions, and
even handle featureless surfaces in the scene.

Index Terms— Interactive 3D reconstruction, image-based
modeling, structure-from-motion

1. INTRODUCTION

3D reconstruction from multiple images is an active research topic
in the computer vision community. There has been significant suc-
cess with automated algorithms [1–6] as well as interactive algo-
rithms [7–10]. Automated algorithms based on structure from mo-
tion, recover the camera poses and a sparse point cloud reconstruc-
tion of the scene from the image sequence. Dense multi-view algo-
rithms can use the sparse reconstruction to generate a dense mesh
model [2, 11]. Some of these works [3, 4] are geared towards video
while some [1] are geared towards unordered photo collections on
the internet. These results are impressive, but require a large photo-
collection.

When the number of input images is restricted, these automatic
algorithms fail to produce a dense plausible reconstruction. Mul-
tiview stereo algorithms like patch based multiview stereo [2], try
to improve the reconstruction by expanding the point features to
patches. However, the reconstruction is still incomplete. In order to
improve the reconstruction, some of the automated algorithms make
planar approximations to the scene [5, 6, 11]. This allows for more
visually pleasing reconstructions. However, these algorithms use ge-
ometric cues in the images like strong edges and lines which may be

absent in textureless surfaces (like walls, etc). This has led to inter-
active 3D reconstruction algorithms.

Several interactive reconstruction algorithms have been pro-
posed in literature ranging from providing feature correspondence,
to providing plane boundaries and line models of the scene. One
such system called VideoTrace [8] is used to interactively model ge-
ometry from video. It has a tracing interface and is capable of using
information recovered by structure from motion. The user in this
system indicates the planes by tracing polygons across the frames of
the video. The 2D interactions are converted to 3D reconstructions
by using geometric information obtained by applying structure from
motion on the video. The user can correct any mistakes in the recon-
structions by moving forward in the video and moving the vertices
of the polygons. Another interactive 3D reconstruction algorithm
was proposed by Sinha et al. [9], where in addition to the geometric
information from structure-from-motion they use cues like vanish-
ing directions to help reconstruct the scene. The system is similar
to VideoTrace, in that the user uses the interface to mark the planes
in the scene by providing a line model of the planes. The system
in addition allows the user to look at the 3D model in intermediate
stages to help correct the line model drawn.

These are clearly very involved interactive algorithms, we re-
lax this requirement to mere scribbles on an image to indicate the
surfaces. Scribbles have been used in interactive algorithms in the
past. They were first used by Boykov et al. [12] for interactive seg-
mentation where indicates foreground and background. Srivastava
et al. [13] improve the 3D model obtained using their Make3D al-
gorithm by using scribbles to enforce coplanarity in their MRF for-
mulation. Sinha et al. [9] used scribbles for texture synthesis where
scribbles over an occluding object helps remove the occluding ob-
ject in the visualization by using texture from the other views. The
use of scribbles in our system is most related to Boykov et al. [12]
than the other works. We use scribbles from the user to indicate the
planar surfaces and then, use intuitive algorithms to finally create the
3D model of the scene.

We now discuss our approach in detail. We describe the prepro-
cessing steps applied to our collection of few images in Section 2,
followed by a description of the interactive algorithm in Section 3.
In Section 4 we describe our texture synthesis and the 3D visualiza-
tions rendered by our system.

2. PREPROCESSING

In this section, we describe the preprocessing performed on the
images before we allow the user to provide interactions.



(a) (b) (c) (d)
Fig. 1: Overview of system: (a) Collection of images given to the system; (b) User providing interactions to indicate the planes in the scene and the resulting
segmentations for those images; (d) Resulting plane cosegmentation after all the refinement; (e) Some sample novel views of the model produced (Best viewed
in color).

Structure From Motion (SFM). In our SFM algorithm, we detect
features in all the images and match features across all the image
pairs. We use two of the images for relative pose estimation, to
estimate the pose of these two cameras and estimate the positions
of these matched features in the 3D point cloud. We then perform
incremental structure from motion [1] where we estimate the po-
sition of other points in the 3D point cloud and the camera poses
for the other views in an incremental fashion. We use intrinsically
calibrated cameras, so, the camera poses are estimated by minimiz-
ing the error between the reprojected 3D points and the 2D feature
points using the perspective-n-point (PnP) approach. The locations
of the triangulated points in the 3D point cloud and optimally ad-
justed using bundle adjustment [14]. At the end of this step we have,
the camera projection matrices for all the views, the reconstructed
3D point cloud and list of the points visible by each camera.

Superpixel map. We use mean shift [15] to break down the images
into about thousand superpixels per image.

Daisy descriptors. In [16], Tola et al. showed ‘SIFT-like’ daisy
descriptors which serve as dense local image descriptors can be used
to obtain a dense depth-map in wide baseline stereo applications. In
our algorithm, we use the daisy descriptors computed for every pixel
to help characterize the content of every superpixel by averaging the
descriptors over all the enclosed pixels. This is later used to classify
the superpixels into the planes in the scene.

3. ALGORITHM

In this section, we first describe the interface we have built to ac-
cept the user interactions. We then describe how we use the interac-
tions from the user to achieve the segmentation of the image into the
planes followed by how we finally used this information to create
the 3D model of the scene.

3.1. Interface and interactions

We have created a java based user interface for our system. The in-
terface has been developed so it can work on any touchscreen based
machine in addition to the conventional machines. The source code
for this GUI may be downloaded from [17]. The system gives the
user a set of images and allows the user to select any image. Once
selected, the user proceeds to scribble on the image with different
colors indicating different plane surfaces in the scene as shown in
Figure 2. These scribbles are used by our algorithm to segment the
image into the different plane surfaces as explained in the next sec-
tion.

Fig. 2: The user interface to provide scribbles to indicate the plane surfaces
(Best viewed in color).

3.2. Scribbles to segmentation

We start with the image the user scribbles on, and use these scribbles
to build a multiclass classifier capable of classifying every superpixel
in the image into one of p planes labeled. We use all the superpixels
which have been scribbled on by the user. The descriptor for each of
the labeled superpixels is computed as the mean daisy descriptor of
all the pixels in the superpixel.

We train a one-against-all classifier using a logistic regression
model. We now test every superpixel in the image by using the
regression model for each plane label. In order to maintain some
smoothness, we formulate the plane labelling problem as energy
minimization defined over a graph constructed over the image. We
build a graph, G = (V, E), over superpixels, with edges connecting
adjacent superpixels. The energy over this graph can be defined as
follows:

E =
∑
i∈V

E(Xi) + λ
∑

(i,j)∈E

E(Xi, Xj), (1)

where the first term is the data term indicating the cost of assign-
ing a superpixel to a particular plane, while the second term is the
edge term used for penalizing label disagreement between neigh-
bours. The negative log response of the logistic regression is used to
model the data term for each superpixel. We set the dataterm of the
superpixels scribbled by the user to−∞ (in practice a large negative
value) as hard constraints in the energy minimization. We model the
edge term using the Potts model, a smoothness term commonly used
in energy minimization methods [18–20],

E(Xi, Xj) = I (Xi 6= Xj) ∗ β, (2)

where I (·) is an indicator function that is 1 if the input argument is
true (and zero otherwise), β is a scale parameter.



Fig. 3: Sample edge connectedness scribbles, used to achieve globally opti-
mal plane parameters by enforcing that the plane pair share these edge pixels
(Best viewed in color).

(a) (b)
Fig. 4: Segmentation refinement: (a) Original segmentation of the planes
with superpixel leaks (black circle); (b) Refined segmentations (Best viewed
in color).

3.3. Plane co-segmentation

The minimum energy labelling obtained using graph cut, segments
the image into the different planes labeled by the user as shown
in Figure 1b. We use the 3D point cloud and their 2D point cor-
respondences obtained using SFM, to transfer the labels from the
2D images to the 3D points. We now use RANSAC-based plane-
fitting [21] on the labeled 3D points to estimate the plane parame-
ters of the labeled planes. At this stage we use additional interac-
tions from the user to indicate the edges shared by two planes by
easily scribbling two lines across the edge as shown in Figure 3.
We use these as constraints while estimating the plane parameters
by enforcing that these boundary points lie on both the connecting
planes, thus, resulting in globally optimal plane parameters. These
contraints help estimate plane parameters even for textureless sur-
faces like the wall in Figure 1.

Using the plane parameters and the camera projection matrices
estimated during the preprocessing stage, we can define a homogra-
phy from the image which was scribbled on, to every other image.
We use these homographies to warp the plane segments in the scrib-
bled image, and hence transfer labels onto the other images. The
segmentations of the group of images are as shown in Figure 4.

3.4. Closing the loop

Our system allows the user to select an image and provide the scrib-
bles to indicate the plane surfaces. Having estimated the planes to
approximate the scene, the system can display the plane segmenta-
tions and the 3D model. The user can now provide more scribbles
to improve the model and indicate new, previously occluded planes,
thus closing the loop on interactive 3D reconstruction.

4. TEXTURE SYNTHESIS

In this section, we discuss two forms of 3D visualizations our system
produces. First, we describe a dense color mapped point cloud ob-
tained by back-projecting all the pixels onto the 3D surfaces. Next,
we describe a mesh based visualization which involves creating a
mesh by triangulating the scene in 3D and overlaying the texture on
the mesh. The two methods we discuss have tradeoffs and depend-
ing on the intended use of the model the user can select one or the
other.

4.1. Refining segmentations

An important preprocessing to the texture synthesis in our system is
refining segmentations. A well known problem with using superpix-
els in vision applications is superpixel ‘leaking’ similar to the leak
shown with a black circle in Figure 4a. We handle this problem with
a two stage segmentation refinement.

First, using the homorgraphies we warp every segment in ev-
ery image to every other image. Now, for every image, we take a
pixelwise vote across the warped segments for the plane labels and
suitably modify the plane segmentation. We observed that our visu-
alization was affected by the fact that we relied on the pixelwise re-
finement to define the segments which resulted in jagged boundaries.
In order to refine this, we consider the lines in 3D corresponding to
the intersection of every pair of planes. These 3D lines are projected
onto the images, and the segmentations are refined using these line
boundaries resulting in sharper plane boundaries. The refined seg-
mentations are as seen in Figure 4b. This second stage of refine-
ment however, would work best with planar surfaces with polygonal
boundaries.

4.2. Back-projection algorithm

Given the plane parameters of the surfaces in 3D, we seek to deter-
mine the position of every 2D image point on the 3D plane. We de-
velop the back-projection algorithm using the camera geometry, by
evaluating the point of intersection of the ray from the camera center
through the pixel on the image plane, and the estimated 3D plane
surface [22]. This formulation is the basis for the visualizations we
describe.

4.3. Texture mapping

At the end of the plane co-segmentation stage, we have the plane
segmentations for every image. For each image, we use the plane
segmentation, and for every plane surface in that image compute the
3D positions of the corresponding pixel locations using the back-
projection algorithm described above. It is clear that, using texture
from one image would result in artifacts like holes due to the per-
spective view of some of the images, on the other hand, using tex-
ture from all the images can result in visually annoying changes in
illumination across images and inter-meshing of textures.

We avoid these artifacts by first normalizing the luminance chan-
nel of all the images and then performing view selection for each
planar surface. We rank the views for each plane based on angle be-
tween the plane normal and viewing direction i.e. lower this angle,
better the view. Using the texture from the best view for every plane
surface can give a good visualization however, it would not cover
the occluded regions of the plane. So, for each plane surface we
start with the best view and back-project the pixels corresponding
to that plane. We then move to the next best view and back-project
the pixels from the non-overlapping regions of the plane. This is
continued till all pixels are accounted for, or we run out of views.

4.4. Visualizations

4.4.1. Dense point cloud visualization

The dense point cloud based visualization is similar to [1], how-
ever with the difference that, we have the 3D model expressed as
planes which can be used to map texture from all the image points
and not just the feature points. We use the texture mapping algo-
rithm described above and map the texture from the images onto the



(a) (b) (c)
Fig. 5: Mesh visualization: (a) Dense point cloud visualization; (b) Single
mesh model; (c) Multiple mesh model (Best viewed in color).

corresponding voxels. We use an OpenGL based viewer which can
render the dense point cloud given the 3D voxel locations and their
corresponding texture from the images. This visualization is shown
in Figure 5a.

4.4.2. Mesh visualization

The mesh visualization is similar to [23, 24]. This visualization
requires triangulating the 3D points corresponding to the boundaries
of the planes and overlaying the texture from their projections on
the image. We generate a VRML file which can use the mesh and
the corresponding image textures and render the texture mapped
mesh model. We made some interesting observations with the
mesh visualizations. Many of the earlier works in 3D visualizations
like [5, 23, 24], create a single mesh from an image, which results
in the 3D model shown in Figure 5b. This single mesh model can
make the visualization very pleasing to look at, hiding artifacts with
perspective views discussed before, however, this does not cover
regions of the scene occluded in that image. This would require
representing the model as a combination of multiple meshes i.e. a
mesh for every plane resulting in a model as shown in Figure 5c.
This would however leave artifacts on the wall when compared to
the dense point cloud visualization.

We can thus conclude that, if we need to create a complete static
model, we would have to represent the model as a dense point cloud,
however, if we would like to create fly-throughs in the scene [5, 6,
23, 24], we can render the texture as a single mesh from one image.
Some additional results on building datasets are shown in Figure 6.

5. CONCLUSIONS

In this paper, we propose a new interactive planar 3D reconstruc-
tion algorithm which uses simple user interactions in the form of
scribbles to indicate the planar surfaces in the scene. We discuss
multiple geometry based methods to refine segmentations, and even
fix superpixel leaks in the process. We also describe two methods of
visualizations used. Preliminary results show that these simple inter-
actions can help obtain complete and pleasing reconstructions and,
even handle featureless surfaces in the scene.

6. REFERENCES

[1] N. Snavely, S. Seitz, and R Szeliski, “Photo tourism: Exploring photo
collections in 3d,” in SIGGRAPH Conference Proceedings, New York,
NY, USA, 2006, pp. 835–846, ACM Press.

[2] Y. Furukawa and J. Ponce, “Accurate, dense, and robust multi-view
stereopsis,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
2009.

[3] M. Pollefeys, D. Nistr, J. Frahm, A. Akbarzadeh, P. Mordohai, B. Clipp,
C. Engels, D. Gallup, S. Kim, P. Merrell, C. Salmi, S Sinha, B. Talton,
L. Wang, Q. Yang, H. Stewnius, R. Yang, G. Welch, and H. Towles,

(a) (b)
Fig. 6: Results on building datasets: Novel views after a single mesh 3D
model has been rendered (Best viewed in color).

“Detailed real-time urban 3d reconstruction from video.,” International
Journal of Computer Vision, vol. 78, no. 2-3, pp. 143–167, 2008.

[4] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis,
J. Tops, and R. Koch, “Visual modeling with a hand-held camera,”
International Journal of Computer Vision, vol. V59, no. 3, pp. 207–
232, 2004.

[5] S. Sinha, D. Steedly, and R. Szeliski, “Piecewise planar stereo for
image-based rendering,” in ICCV, 2009.

[6] Y. Furukawa, B. Curless, S. Seitz, and R. Szeliski, “Reconstructing
building interiors from images,” in ICCV, 2009.

[7] P. Debevec, C. Taylor, and J. Malik, “Modeling and rendering archi-
tecture from photographs: A hybrid geometry- and image-based ap-
proach,” in SIGGRAPH, 1996, pp. 11–20.

[8] A. Hengel, A. R. Dick, T. ThormŁhlen, B. Ward, and P. H. S. Torr,
“Videotrace: rapid interactive scene modelling from video.,” ACM
Trans. Graph., vol. 26, no. 3, pp. 86, 2007.

[9] S. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys,
“Interactive 3d architectural modeling from unordered photo collec-
tions,” ACM Transactions on Graphics (Proceedings of SIGGRAPH
Asia 2008), 2008.

[10] “Google sketchup: http://sketchup.google.com/,” 2000.
[11] Y. Furukawa, B. Curless, S. Seitz, and R. Szeliski, “Manhattan-world

stereo,” in CVPR, 2009.
[12] Y.Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal bound-

ary and region segmentation of objects in n-d images,” ICCV, 2001.
[13] S. Srivastava, A. Saxena, C. Theobalt, S Thrun, and A. Y. Ng, “i23

- rapid interactive 3d reconstruction from a single image,” in Vision,
Modelling and Visualization, 2009.

[14] B. Triggs, P. Mclauchlan, R. Hartley, and A. Fitzgibbon, “Bundle ad-
justment - a modern synthesis,” in Vision Algorithms: Theory and Prac-
tice, LNCS. 2000, pp. 298–375, Springer Verlag.

[15] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward
feature space analysis,” PAMI, vol. 24, no. 5, pp. 603–619, 2002.

[16] E. Tola, V. Lepetit, and P. Fua, “Daisy: An efficient dense descriptor
applied to wide baseline stereo,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. 99, no. 1, 2009.

[17] D. Batra, A. Kowdle, K. Tang, and T. Chen, “iScrib-
ble, http://chenlab.ece.cornell.edu/projects/
iScribble/iScribble.html,” 2009.

[18] D. Batra, A. Kowdle, K. Tang, D. Parikh, and T. Chen, “Interac-
tive cosegmentation by touch, http://chenlab.ece.cornell.
edu/projects/touch-coseg/,” 2009.

[19] J. Cui, Q. Yang, F. Wen, Q. Wu, C. Zhang, L. Gool, and X. Tang,
“Transductive object cutout,” in CVPR, 2008.

[20] A. Criminisi, T. Sharp, and A. Blake, “Geos: Geodesic image segmen-
tation,” in ECCV, 2008.

[21] M. Fischler and R. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, June 1981.

[22] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2000.

[23] A. Saxena, M. Sun, and A. Y. Ng, “Make3d: Learning 3d scene struc-
ture from a single still image,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 31, no. 5, pp. 824–840, 2009.

[24] D. Hoiem, A. Efros, and M. Hebert, “Automatic photo pop-up,” in
ACM SIGGRAPH, August 2005.


