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ABSTRACT

Interactive image segmentation is a powerful tool that allows
users to direct the segmentation algorithm towards a desired
output. However, marking scribbles on multiple images is a
cumbersome process. Recent works show that statistics col-
lected from user input in a single image can be shared among
a group of related images to perform interactive cosegmenta-
tion. Most works use a naive heuristic of requesting the user
input on a random image from the group. We show that in
practice, selecting the right image to scribble on is critical to
the resulting segmentation quality. In this paper, we address
the problem of Seed Image Selection, i.e., deciding which im-
age among a group of related images should be presented to
the user for scribbling. We formulate our approach as a classi-
fication problem. Our approach outperforms the naive heuris-
tic used by other works.

Index Terms— Cosegmentation, Interactive Image Seg-
mentation, Pattern Classification

1. INTRODUCTION

Interactive image segmentation or Object-Cutout is a tool that
enables users to direct the segmentation algorithm towards
a desired output via interactions in the form of scribbles [2,
8], or bounding boxes [10] around objects of interest. How-
ever, marking scribbles on multiple images is still a cum-
bersome process, and recent works [6, 11] have shown that
statistics collected from user input in a single image can be
shared among a group of related images to perform interac-
tive cosegmentation. Cui et al. [6] learn local colour mod-
els and edge profile models from a fully segmented image
to “transduce” segmentations on novel images. Schnitman et
al. [11] use a patch-dictionary based method that learns patch-
label costs from a fully segmented image to “induce” seg-
mentations on novel images. Clearly, re-using human effort
to achieve segmentations on groups of images is a promising
direction. However, we feel that past works ignore certain
key questions: Which image in the group should be presented
to the user for obtaining input? How much does the over-
all group segmentation accuracy depend on this choice of the
seed image? These are precisely the questions we address in
this paper. To answer the second question, and to motivate

the importance of the first one, we present experiments on a
large collection of image groups collected from Flickr. We
find that average segmentation accuracy for a group varies
significantly with the image that was scribbled, thus making
the selection of seed image extremely important (Fig. 1). We
refer to this problem as Seed Image Selection in interactive
cosegmentation. We formulate our approach as a classifica-
tion problem, where the goal is to predict which image in
the group would maximize the average group segmentation
accuracy. We also find that the heuristic chosen by previous
works [6,11] of arbitrarily picking an image from the group is
a bad heuristic in practice, one that our method outperforms.

The rest of this paper is organized as follows: Section 2
describes our setup to answer the posed questions, including
a description of the dataset and the segmentation algorithm;
Sections 3 and 4 describe our analysis that emphasizes the
importance of selecting the right seed image, and our ap-
proach for identifying this seed image in a group; Section 5
presents our experimental results demonstrating the improve-
ment in cosegmentation accuracy we achieve, followed by
conclusions and discussions in Section 6.

2. INTERACTIVE GROUP SEGMENTATION

2.1. Dataset

In order to be able to make statistically significant inferences,
we need a large segmentation dataset containing multiple
groups of related images and pixel-level ground-truth anno-
tations (to compute segmentation accuracies, and quantify
answers to the posed questions). To the best of our knowl-
edge no such dataset exists in public domain. We build a large
cosegmentation dataset of groups of related images from the
Flickr online photo collection, and manually segment all im-
ages. Our dataset consists of 38 groups, with 643 images in
total. Examples of these groups are shown in various figures
in this paper. We plan to make this dataset (and annotations)
publicly available to facilitate further work, and allow for
easy comparisons.

We now describe the segmentation algorithm we use for
sake of completeness. It should be noted that this is a standard
formulation following current trends in Object-Cutout [2, 6,
8], and hence we believe that the conclusions we draw from



(a) Scribbles (b) Images and corresponding segmentations (c) Scribbles (d) Images and corresponding segmentations

Fig. 1: Importance of Seed Image Selection: In (b,d) the first row shows a group of images with scribbles on image 2 (shown in
a) and image 3 (shown in c). Blue scribbles denote foreground pixels, while red scribbles denote background pixels. The second
row shows the segmentations achieved by these scribbles (white pixels denote forground). In this group, image 2 is the best
image to scribble on, while image 3 is the worst, in terms of mean segmentation accuracies (as can be seen in the masks). This
is intuitive because statistics learnt from image 3 do not contain information about grass, which is misclassified as foreground.
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Fig. 2: Histogram of the difference between the best image
accuracies and the worst image accuracies over all groups.

our results are generalizable to other cosegmentation setups.

2.2. Segmentation Algorithm

We cast our binary labelling problem as an energy minimiza-
tion problem solved via graph cuts. We work with an over-
segmentation of the image. The task is to label each super-
pixel as foreground or background. We construct a graph over
these superpixels, where adjacent superpixels are joined by
an edge. Associated with this graph is an energy which is a
weighted combination of a data-term and an edge-term. We
model the data-term as the negative log-likelihood of the fea-
tures extracted at a superpixel given the class model. Our fea-
tures are mean Luv colour features extracted over superpixels,
and the class model is a Gaussian Mixture Model (GMM).
The edge-term is modeled as a contrast sensitive Potts model
using the learnt distances proposed by Batra et al. [1]. Fi-
nally, we use Graph-cuts to efficiently compute the MAP la-
bels for all superpixels, using the implementation provided by
Boykov et al. [3,4,7]. Example segmentations can be seen in
Fig. 1.

3. IMPORTANCE OF THE SEED IMAGE

We now have all the infrastructure ready to attempt to answer
our original questions. In this section, we evaluate the impor-
tance of finding the right image to scribble on. Our experi-

mental setup is as follows: for all the groups in our dataset,
we cycle through the images in each group and generate scrib-
bles for this image. So far, we have described our segmenta-
tion algorithm given scribbles provided by a user. However,
for the purpose of extensive analysis it is important to be able
to perform automatic experiments without explicitly polling a
human for these scribbles. Thus, we use the ground-truth seg-
mentations to simulate user scribbles. Our scribble generation
technique consists of sampling a starting point from the image
(with all pixels having equal probability). A direction angle
is randomly sampled such that it is highly correlated with the
previous direction sample for the scribble, and a fixed-size
step is taken along this direction to extend the scribble (as
long as the scribble remains within the starting object bounds
as provided by the ground truth segmentations). The reason
for forcing correlated direction samples is to create smooth
continuous scribbles similar to those that humans tend to pro-
vide. Examples scribbles can be seen in Fig. 1. Using these
scribbles, data-term and edge-term are set up for all the im-
ages in this group and Graph-cuts are used to achieve segmen-
tations. In this manner, average segmentation accuracies for a
group are computed for each image scribbled.

For each group we find the best and worst images to scrib-
ble on, i.e. the ones that resulted in the highest and lowest
average group segmentation accuracies respectively. A large
difference between the best and worst accuracy would indi-
cate that for that particular group it is really important to
pick the right image to scribble on, because that choice can
have a strong impact on the group segmentation accuracies.
It is important to note that the our inferences are dependent
on the difficulty of the group being segmented. Clearly, if a
group consists of successive frames from a video sequence,
the choice of seed image is irrelevant. The higher the di-
versity in the images among a group, the more variation we
would observe in the accuracies achieved by various seed im-
ages. Fig. 2 shows the histogram of the differences between
the best and worst image accuracies for all the groups in our
dataset. This confirms our hypothesis that some groups have a
lot of difference between the best and worst image accuracies



and thus motivates the Seed Image Selection problem.

4. SEED IMAGE SELECTION

4.1. Feature Extraction

We pose the Seed Image Selection problem as a classification
problem. We extract the following features to describe the
images.
Illumination histogram. One of the observations we made
was that the presence of strong shadows across the image
(Fig. 3(a)) often results in poor cosegmentation accuracies.
To capture this intuition, we compute a 50-dim histogram of
the gray scale image.
Hue, Saturation and Value entropy. The variety of colours
in an image typically corresponds to the amount of useful in-
formation in the image, as seen in Fig. 3(b). We quantify this
via a 3-dim vector holding the entropies of the hue, satura-
tion and value marginal histograms. The more the number of
colours present in an image, the higher the entropies in these
distributions would be.
Gradient histogram. The distribution of the strength of
edges is a good indicator of how interesting the image is in
terms of the existence of several regions/objects in the im-
age. To represent this, we compute a 20-dim histogram of
the edge magnitudes across the image. In Fig. 3(c) we see
that the worst image in the group has very few strong edges
as compared to the best image which has more variety in its
content.
Scene Gist. The Gist features can help capture a holistic view
of the overall scene layout (Fig. 3(d)) . We extract the 1280-
dim Gist features [9] which captures the response of the im-
age to gabor filters of different orientations and scales, along
with the spatial layout of these responses over the image.
Segmentation histogram. Another indicator of the scene
layout is the distribution of the sizes of segments in an image
when run through an off-the-shelf segmentation algorithm.
For instance, as seen in Fig. 3(e,f), there is a stark contrast
in the distribution of sizes of segments found in these images.
We use meanshift [5] for generating these segmentations.

4.2. Classification

We split our dataset into training groups and testing groups.
We train a linear SVM using each of the nf (=5) features
described in Section 4.1 individually to classify the best im-
age in a group from the worst image. At training time we do
not consider the remaining images in a group, because multi-
ple images in groups can be visually similar leading to close
cosegmentation accuracies, as seen in Fig. 3(g), and including
them during training would make the classification problem
artificially hard.

During testing, each image from the test group is passed
through these nf SVMs, and their output scores are recorded.
Let the score corresponding to image xi and SVM (feature)

fa be µa
i . The best images in training groups were labeled

as the positive class, and thus we expect µa
i to be higher for

better images.
We are ultimately interested in a ranking of the m images

in the test group, and in order to do so, we compute a quality
measure for each image, by comparing it to every other image
in the group. Each image xi is assigned a quality measure

Q (xi) =
m∑

j=1

nf∑
a=1

|(µa
i − µa

j )|s (1)

where |t|s is the sign function, i.e. +1 if t > 0, and −1
otherwise.

This effectively captures how many times the image xi got
voted as being better than other images in the group, among
all features. The m images in a group are ranked by this mea-
sure, and the top ranked image is chosen to be scribbled on.

5. EXPERIMENTS AND RESULTS

For our experiments, we select m to be 5, and retain a ran-
dom subset of 5 images from all groups. Since one of the 38
groups contained only 4 images, we work with the remain-
ing 37 groups. We perform leave one out cross-validation.
To understand the effectiveness of each of the individual fea-
tures, we first report their corresponding image classification
accuracies for identifying the best image from the worst. The
results are shown in Fig. 4. It can be seen that all features
hold some information to identify the best images from the
worst ones (significantly outperforming chance, which would
be 50%). It can be seen that the HSV entropies have the high-
est accuracy (∼92%). This is understandable, especially since
the segmentation algorithm uses colour features. All other
features have similar accuracies (∼76%).

To quantify the quality of the final ranking determined by
our approach, we match our predicted ranks of images in the
test groups, to the ground truth ranks (determined by sorting
the average cosegmentation accuracies). We find that on av-
erage (across groups), we assign a rank of 2.14 to images that
have a ground truth rank of 1. Moreover, the images that we
select as rank 1, have, on average, a rank of 2.11. In both
cases, a random classifier would have an average rank of 3.
Although this improvement in ranks may not seem signifi-
cant, it should be noted that often groups contain more than
one image that are “good” for scribbling and give similar seg-
mentation accuracies, e.g. images shown in in Fig. 3(g).

The most relevant metric, for our application, is the gain
in cosegmentation accuracies achieved by using our proposed
Seed Image Selection algorithm, as compared to picking an
image from the group at random, which is the heuristic used
by previous works. These results are shown in Fig. 5. We
see that there is more than a 10% gap in the cosegmentation
accuracies that can be achieved by scribbling on a randomly
selected image (79.7%), and picking the best image in each



(a) (b) (c) (d) (e) (f) (g)

Fig. 3: For columns (a-e), top and bottom rows show best and worst images from example groups, which motivate our choice of
features (a) Illumination histogram (b) HSV colour histogram (c) Gradient histogram (d) Gist and (e) Segmentation histogram;
(f) Segmentations of images shown in (e); (g) Two images from the group are very similar with similar segmentation accuracies
making the ranking a slightly misleading metric. For details please see Section 4.1.
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Fig. 4: The classification accuracies of each of our features in
identifying best images in a group from the worst images.

group (90.2%). It should be noted that the best accuracy is
the accuracy which would be achieved if an oracle were to
label the best image in each group, and hence is the upper
bound on what accuracy we can achieve. We can see that by
scribbling on an image recommended by our system, we can
fill more than half of this gap (at 85.4%).

6. CONCLUSION

We present the problem of Seed Image Selection in interac-
tive cosegmentation, i.e. deciding which image in a group
should be scribbled on. We collect a large dataset of image
groups and manual pixel-level annotations. Our experiments
on this dataset show that the group segmentation accuracies
vary significantly with the choice of the seed image, and thus
the heuristic used by previous works (i.e. randomly selecting
an image) is a bad heuristic in practice. We formulate this
Seed Image Selection problem as a classification problem,
and show that we are able to outperform this naive heuris-
tic. It is interesting to note that the improvement in segmen-
tation accuracy is achieved without changing the underlying
segmentation algorithm, simply by picking the right image
to scribble, a question mostly overlooked by existing work in
cosegmentation. Future work would involve predicting where
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Fig. 5: The final cosegmentation accuracies.

in the image the segmentation algorithm should prompt the
user for more scribbles, given a current set of scribbles.
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