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Abstract We refer to the task of recovering the 3D struc-
ture of an object or a scene using 2D images as image-based
modeling. In this paper, we formulate the task of recovering
the 3D structure as a discrete optimization problem solved
via energy minimization. In this standard framework of a
Markov Random Field (MRF) defined over the image we
present algorithms that allow the user to intuitively inter-
act with the algorithm. We introduce an algorithm where the
user guides the process of image-based modeling to find and
model the object of interest by manually interacting with
the nodes of the graph. We develop end user applications
using this algorithm that allow object of interest 3D mod-
eling on a mobile device and 3D printing of the object of
interest. We also propose an alternate active learning algo-
rithm that guides the user input. An initial attempt is made at
reconstructing the scene without supervision. Given the re-
construction, an active learning algorithm uses intuitive cues
to quantify the uncertainty of the algorithm and suggest re-
gions, querying the user to provide support for the uncer-
tain regions via simple scribbles. These constraints are used
to update the unary and the pairwise energies that, when
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solved, lead to better reconstructions. We show through ma-
chine experiments and a user study that the proposed ap-
proach intelligently queries the users for constraints, and
users achieve better reconstructions of the scene faster, es-
pecially for scenes with textureless surfaces lacking strong
textural or structural cues that algorithms typically require.

Keywords Image-based modeling · Interactive 3D recon-
struction · Active-learning · Energy minimization

1 Introduction

Image-based modeling, the recovery of 3D structure of a
scene using 2D images, is an active research topic in the
computer vision community. There has been significant suc-
cess with automatic algorithms (Snavely et al, 2006; Fu-
rukawa and Ponce, 2009; Pollefeys et al, 2008, 2004; Sinha
et al, 2009; Micusı́k and Kosecká, 2010; Furukawa et al,
2010; Goesele et al, 2007; Gallup et al, 2010). However,
when only a few images are available, these automatic algo-
rithms fail to produce a dense reconstruction, leaving holes
in case of scene irregularities such as textureless and specu-
lar surfaces. While planar approximations to the scene (Sinha
et al, 2009; Furukawa et al, 2009; Micusı́k and Kosecká,
2010; Gallup et al, 2010) help obtain more visually pleasing
reconstructions, the cues in a number of scenes are not suffi-
cient to hypothesize a good model. In particular, textureless
and specular surfaces and a lack of geometric cues such as
lines hinders their performance.

On the other hand, when humans look at a scene they
much better discern the geometric structure behind the pho-
tons. This forms the basis for interactive algorithms. We il-
lustrate the idea of putting the user in the loop using Fig.
1. The computational engine is the workhorse that uses the
constraints provided by the user (i.e., oracle) and recovers
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Fig. 1: Overview: Basic ingredients to put the user in the
loop for image-based modeling.

the 3D structure of the scene (or object of interest). The com-
putational engine provides feedback in the form of the cur-
rent solution to the problem or explicit feedback to query the
user for additional constraints, placing the user in a closed
loop with the computational engine.

A number of works formulate the task of image-based
modeling as a discrete labeling problem. For example, shape
from silhouette algorithms formulate a binary labeling prob-
lem to separate the object from the background (Baumgart,
1974; Lee et al, 2007; Campbell et al, 2007), a number of
stereo matching algorithms treat the pixel disparities as dis-
crete labels and formulate a labeling problem to recover the
depth of the scene (Scharstein and Szeliski, 2002), piecewise
planar stereo works discretize the scene into a finite number
of 3D planes and treat these planes as label set (Sinha et al,
2009; Micusı́k and Kosecká, 2010; Furukawa et al, 2009;
Gallup et al, 2010). Motivated by these works, we consider
the task of putting the user into the loop. A common frame-
work of all these works is the construction of a Markov Ran-
dom Field (MRF) over the image illustrated in Fig. 2.

We propose algorithms that use superpixels extracted
from the image as the labeling sites1 i.e., nodes in the MRF,
with edges to all adjacent superpixels. User-provided input
is incorporated into the node and edge terms of the model as
constraints. First, we propose an algorithm where the user
provides constraints on the nodes of the graph (Section 4).
In this algorithm, the user initializes the loop by providing
annotations on the nodes. These node constraints allow the
user to define the label space for the problem and modulate
the unary term in the energy function. In the second algo-
rithm, an automatic piecewise planar reconstruction algo-
rithm first tries to reconstruct the scene initiating the loop.
Given the reconstruction, we propose an active-learning al-
gorithm that uses intuitive cues to quantify the uncertainty of
the algorithm. The algorithm then queries the user to provide
support for the uncertain regions via edge constraints on the
pairwise term that lead to better reconstructions (Section 5).
We will discuss the details of the algorithm and applications
in the following sections.

1 Superpixels are used to help reduce computational complexity

Fig. 2: Discrete labeling problem: The user constraints are
provided over the nodes and edges of the graph to help mod-
ulate the unary term and the pairwise term, respectively.
Note that the grid graph here is only for illustration. We use
an irregular graph over superpixels in our work.

Contributions. Our primary contributions are:

– We propose a framework for putting the user in the loop
for image-based modeling, formulating it as a discrete
labeling problem. We develop two formulations, one where
the user guides the algorithm via interactions, and sec-
ond a novel active-learning formulation where the user
is guided by the algorithm.

– We show that we can leverage the user input via very
simple interactions in the form of scribbles, which are
intuitive for any user to follow.

– We demonstrate through user studies and machine ex-
periments that our proposed algorithm achieves impres-
sive 3D reconstructions and show that the active-learning
successfully guidea the user towards improved recon-
structions.

Organization. The rest of this paper is organized as follows:
Section 2 discusses related work; Section 3 describes the
preprocessing performed on the images in the proposed al-
gorithms; Section 4 presents our approach where the user
provides node constraints to initiate the loop and reconstruct
the object of interest; Section 5 describes our approach of
active-learning where the automatic computational engine
initiates the loop and guides the user towards where it needs
help; Section 6 discusses some applications including per-
forming object of interest 3D modeling on a mobile device;
Finally, Section 7 concludes the paper with discussions.

Preliminary versions of the object of interest 3D model-
ing, interactive piecewise planar 3D reconstruction and ac-
tive learning for piecewise planar 3D reconstruction appeared
as papers (Kowdle et al, 2010), (Kowdle et al, 2011a) and
(Kowdle et al, 2011b), respectively. This article brings the
above works together in the bigger picture of putting the user
in the loop for image-based modeling in a unified discrete
labeling framework. Additional results that demonstrate the
impact of the active learning approach is shown in Section
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5.4.4. In addition, in Section 6 we describe some applica-
tions including performing object of interest 3D modeling
on a mobile device and 3D printing of the object of interest,
using our proposed algorithm. The datasets used in each of
our works are publicly available.

2 Related Work

Automatic algorithms. 3D reconstruction from multiple im-
ages is an active research topic in the computer vision com-
munity. While some 3D reconstruction works (Pollefeys et al,
2008, 2004) are geared towards video, some (Snavely et al,
2006; Goesele et al, 2007) are geared towards unordered
photo collections on the internet. Most require a large photo
collection. When the number of input images is small, the
automatic algorithms fail to produce a dense reconstruction.
A survey of multiview stereo methods has been provided by
Seitz et al (2006). With a small set of images the reconstruc-
tion is incomplete, leaving holes on textureless and specular
surfaces. Planar approximations to the scene (Sinha et al,
2009; Furukawa et al, 2009; Micusı́k and Kosecká, 2010;
Gallup et al, 2010; Kowdle et al, 2012b) help obtain more vi-
sually pleasing reconstructions. However, these algorithms
use image features such as strong edges and lines, which
may be absent in textureless surfaces, motivating interactive
algorithms.

Interactive algorithms: user driven. A typical approach
to obtain the 3D model of a non-planar object is to cap-
ture images of the object in a controlled environment like
a multi-camera studio with mono-color screen where back-
ground subtraction is a well structured problem, and use a
shape-from-silhouette algorithm (Szeliski, 1993; Fang et al,
2003; Chen et al, 2008; Forbes et al, 2006) to render the 3D
model. Although these techniques have produced promising
results in these constrained settings, this is a tedious pro-
cess, and in some cases not an option (for example, immov-
able objects like a statue, historically or culturally significant
artifacts). However, a more realistic approach is to capture
images of the object in its natural environment and directly
estimation the 3D structure from these natural images. The
images captured in this case would typically have cluttered
backgrounds, which is known to be problematic for back-
ground subtraction algorithms. There have been many in-
teractive 3D reconstruction algorithms that uses a piecewise
planar representation of the scene (Debevec et al, 1996; Cri-
minisi et al, 1999; Sturm and Maybank, 1999; Bartoli, 2007;
Hengel et al, 2007; Sinha et al, 2008; Sketchup, 2000). The
user interactions required range from providing feature cor-
respondence, to providing plane boundaries and line models
of the scene. Debevec et al (1996) proposed an algorithm to
reconstruct man-made architectures by marking the edges
in the structure and by exploiting symmetry in man-made

structures. Hengel et al (2007) and Sinha et al (2008) re-
quire the user to provide a detailed line model of the object
or mark all the 2D plane polygons in the scene, respectively;
and reconstruct the scene by incorporating geometric infor-
mation from structure-from-motion. Srivastava et al (2009)
used scribbles as input to help improve the 3D reconstruc-
tion obtained from a single image. In the first algorithm pro-
posed in this paper, we leverage the user input to provide
node constraints in the MRF formulation. We propose inter-
active algorithms driven by the user via simple scribbles that
are used to reconstruct non-planar objects, planar scenes,
and even render non-planar objects as part of a planar scene.

Interactive algorithms: active-learning. Active learning is
a well established subfield of machine learning, which has
been shown to benefit a number of computer vision appli-
cations such as object categorization (Kapoor et al, 2007),
image retrieval (Gosselin and Cord, 2008; Zhou and Huang,
2003), video classification (Yan et al, 2003), dataset anno-
tation (Collins et al, 2008), and interactive co-segmentation
(Batra et al, 2011); maximizing the knowledge gain while
valuing the user effort (Vijayanarasimhan et al, 2010). How-
ever, such an algorithm has not been proposed for image
based modeling. Batra et al (2011) proposed an approach
for interactive co-segmentation where, starting from the user
interactions (scribbles) to identify the object of interest, the
algorithm exploits a number of cues using the scribbles, and
identifies informative regions to request the user for more
interactions. Interactive 3D reconstruction, however, is not
a trivial extension of this binary problem to multi-class seg-
mentation. Rich information is already embedded in mul-
tiple images of a scene, which an automatic algorithm can
fully utilize. However, the automatic algorithms fall short
where texture or geometry cues cannot be easily identified
from the images. Therefore, we formulate interactive 3D re-
construction as an error-correction and learning problem,
where active-learning identifies uncertain regions, requests
the user to provide geometric cues, and adapts the algorithm
for the specific scene based on the user inputs.

3 Algorithm: Pre-processing

In this paper we work with multiple images of a scene cap-
tured from different viewpoints. We perform the following
pre-processing steps. We first run structure from motion (SfM)
using the algorithm by Snavely et al (2006) on the multiview
images to recover the camera projection matrices for all the
views, a sparse 3D point cloud and the set of the points visi-
ble by each camera. We construct a graph,G = (V,E), over
the superpixels2, with edges between adjacent superpixels

2 We use mean-shift segmentation (Comaniciu and Meer, 2002) to
break an image to about thousand superpixels.
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Fig. 3: Node constraints. The colored nodes in the graph rep-
resent the node constraints provided by the user via multiple
colored scribbles to indicate the different labels. More de-
scription about the node constraints and incorporating them
into the algorithm is in Section 4.

to formulate our discrete labeling problem. The graph is a
planar graph, but not typically a grid graph we use for illus-
tration in Fig. 2. We have developed a Java-based user in-
terface, which we have made publicly available (Tang et al,
2009). This interface is used in all our interactive algorithms.

In the following sections, we will first describe the algo-
rithm that is initiated by the user via node constraints to ob-
tain the final 3D reconstruction via scene co-segmentation.
We will then describe the algorithm that is driven by the
computational engine and guides the user constraints via an
active-learning algorithm.

4 User initiates interactive 3D modeling

In our first approach, the user provides annotation on the
nodes of the graph as shown in Fig. 3 and guides the process
by initiating the algorithm. The user is first displayed the im-
age collection. The user selects an image and provides scrib-
bles on the image with different colors indicating the label
space for the segmentation algorithm. In our work, the labels
either indicate the planar surfaces in the scene or just indi-
cate the object of interest and the background. Given these
scribbles on the nodes of the graph the problem formulation
is similar to the problem of multi-class segmentation (Batra
et al, 2011; Vicente et al, 2011). In the following sections,
we will first establish notation for the discrete labeling prob-
lem and then describe how we incorporate the user interac-
tions to aide image-based modeling.

4.1 Energy minimization

Let the set of images be X . Consider an image-scribble pair
D = {X,S}, where the image X chosen by the user is
represented as a collection of n nodes (superpixels) to be
labeled, X = {X1, X2, . . . , Xn}. The user provides a set
of scribbles S on the image with multiple labels (suppose

that the user defines L labels in the scene), which is rep-
resented as the partial set of labels for these nodes S =

{S1, S2, . . . , Sn}where, Si = {0, 1, . . . ,L−1}. Using these
labeled nodes (node constraints), we learn an appearance
modelA described below. We define an energy function over
the image as:

E(X : A) =
∑
i∈V

Ei(Xi : A) + λ
∑

(i,j)∈E

Eij (Xi, Xj) , (1)

where the first term (unary term) indicates the cost of as-
signing a node to one of the labels, while the second term
(pairwise term) is used for penalizing label disagreement be-
tween neighbors. The colon (:) in the equation indicates that
the term is dependent on the learnt appearance model.

Unary Term. The unary term is modeled via the node
constraints provided by the user. Given the node constraints
we learn the appearance model, which consists of a Gaus-
sian Mixture Model for each of the L labels defined by the
user i.e, A = {GMM0, . . . ,GMML−1}. Specifically, we use
color features (Lab space) extracted from superpixels on the
labeled nodes and fit GMMs for the corresponding classes.
We use MDL to estimate the right number of components to
use to describe the data (allowing a maximum of 10 Gaus-
sian components). The unary term for all nodes are then de-
fined as the negative log-likelihood of the features given the
class model. We set the unary term of the superpixels la-
beled by the user to −∞ (a large negative value) as hard
constraints in the energy minimization.

Pairwise Term. We use the commonly used contrast
sensitive Potts model to model the pairwise term,

Eij(Xi, Xj) = I (Xi 6= Xj) exp(−dij), (2)

where I (·) is an indicator function that is 1(0) if the in-
put argument is true(false), dij is the normalized distance
between mean color of the superpixels i and j.

Finally, we use graph-cuts (with α-expansion) to com-
pute the MAP labels for all superpixels (Bagon, 2006; Boykov
and Kolmogorov, 2004; Boykov et al, 2001; Kolmogorov
and Zabih, 2004). The parameter λ was empirically chosen
using one of the datasets and fixed for all scenes3. This was
found to work well in practice. Given, the above formulation
of the energy minimization problem we discuss below how
these constraints allow the user to reconstruct non-planar ob-
jects, planar scenes and even render non-planar objects as
part of the planar scene.

4.2 Reconstructing non-planar objects

Consider reconstructing a non-planar object of interest such
as a statue as shown in Fig. 4a. A popular approach to ob-
tain the 3D model is shape from silhouette i.e., obtain the

3 The parameter λ is set to 0.5
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(a) (b) (c) (d) (d)

Fig. 4: Object of interest 3D modeling. (a) Input multiview images of the object of interest (statue); (b) User node constraints
that are used as hard constraints to learn the appearance models a perform the co-segmentation; (c) Resulting co-segmentation
that has some inaccurate labeling in the background; (d) Shape from silhouette reconstructs the 3D model by the finding the
volume of intersection given the camera parameters; (e) Projecting the 3D model back into each image allows fixing the
segmentation errors that existed earlier.

silhouette of the object from multiple viewpoints and infer
the volume of intersection (visual hull). We wish to avoid
the tedious (sometime impossible) process of taking the ob-
ject of interest into a controlled setup such as an studio with
chroma-keying setup. We instead capture images of the ob-
ject of interest from multiple views and get the user into the
loop to obtain the silhouettes.

The user provides node constraints by providing scrib-
bles of two colors (two labels) on one image to indicate the
object of interest and the background as shown in Fig. 4b.
The task is setup as a binary labeling problem as described
above in Section 4.1 with L = 2. While the user may chose
only one image to provide the node constraints, we use the
idea that the images are tied together through the shared ap-
pearance models (A) learnt using the user inputs. The shared
appearance models help formulate the energy function de-
scribed in Eqn 1 for each image. Using graph-cuts we ob-
tain the cosegmentation of the object in each view as shown
in Fig. 4c. More details about the two class co-segmentation
formulation and an extension to intelligently guide the user
input is available in Batra et al (2011).

Note that the segmentation is noisy with small regions
in the background that share similar appearance to the ob-
ject of interest incorrectly labeled. While one approach to
fix this is to modulate the smoothness parameter (β), this
is a sensitive parameter to tune since it can result in re-
gions of the object of interest being incorrectly labeled as
background. We instead use the 3D geometry to help fix
errors. Using the camera parameters recovered in the pre-
processing stage (Section 3) and the co-segmentation as the
silhouettes of the object we use shape from silhouette (Chen
et al, 2008) to recover the 3D model of the object of in-
terest shown in Fig. 4d. The volume of intersection recov-
ered eliminates the sparse errors in the background. We now
project the 3D model back into each view to fix the errors
and obtain a clean co-segmentation of the object of interest
Fig. 4d. We refer the reader to Kowdle et al (2010) for more
results, and comparisons.

4.3 Reconstructing planar scenes

We have considered reconstructing non-planar objects in the
previous section, we now consider obtaining piecewise pla-
nar reconstructions of the scene. We use the interface to dis-
play the multiview image collection to the user. The user se-
lects an image and provides scribbles on the image with dif-
ferent colors indicating different planar surfaces as shown
in Fig. 5b. In the context of the formulation described in
Section 4.1, the user provides node constraints for L planar
surfaces, the algorithm learns the appearance model to de-
scribe each surface and sets up the energy function solved
via graph-cuts (with α-expansion). The result segments the
image into the different surfaces labeled by the user as shown
in Fig. 6a; we call this scene segmentation.

4.3.1 Scene segmentation to 3D geometry

Using SfM we have a sparse 3D point cloud and the 2D fea-
ture correspondence across the images for this point cloud.
We therefore know the subset of 3D feature points seen from
the current view (scribbled image). This information helps
transfer the labels from the 2D scene segmentation to the 3D
points, based on which scene segment the 3D points project
onto. We now use RANSAC-based plane-fitting on the la-
beled 3D points to estimate the plane parameters enforcing
that the plane normal points outwards i.e., towards the cam-
era looking at the scene.

We note that there may be featureless surfaces like the
wall in the scene, which lacks enough 3D point support to be
reconstructed. The algorithm then prompts the user for some
simple additional interactions to indicate the edges shared
by this surface with the other surfaces in the scene by eas-
ily scribbling two lines across the edge shared as shown in
black ellipses in Fig. 6a. We obtain an estimate of the plane
parameter by enforcing that the boundary points correspond
to the 2D projection of the line of intersection of the con-
necting 3D planes, thus, resulting in globally optimal plane
parameters. However, if the featureless surface shares just
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(a) (b) (c) (d)

Fig. 5: Interactive piecewise planar 3D reconstruction: (a) Input images (image selected by user shown in yellow box); (b)
User interactions to indicate the surfaces in the scene; (c) Scene co-segmentation of all images by using the idea of 3D
scribbles to propagate scene geometry; (d) Some sample novel views of the reconstruction of the scene, with and without
texture.

(a) (b) (c) (d)

Fig. 6: Scene co-segmentation: (a) Scene segmentation with user interaction indicating connected planes (white scribbles in
black ellipses); (b) 3D scribbles inferred from the segmentation; (c) 3D scribbles warped onto the other images to propagate
scene geometry (Note: scribbles have been increased to improve visibility; the scribbles used for the results are in Fig. 5b);
(d) Scene co-segmentation.

one edge with another plane, we make perpendicularity as-
sumptions for that surface to choose the most probable plane
amongst the infinite planes which shares that edge. This as-
sumption has been shown to work well (Hoiem et al, 2005)
and would be the best possible estimate, given the support.

4.3.2 3D scribbles and scene co-segmentation

Our goal is to obtain a co-segmentation of the planar sur-
faces in each of the images. Co-segmentation of the multiple
surfaces in the scene is not as trivial as the binary image co-
segmentation since, it is hard to define features discrimina-
tive between the geometric surfaces. However, when a user
provides scribbles on an image, they are doing so based on
their perception of the geometry of the scene, i.e., they are
not just indicating surfaces and objects in that image but, are
giving us cues about the 3D scene geometry common across
all the images. This is the common thread between the im-
ages we exploit to perform the co-segmentation.

3D scribbles. Using the estimated plane parameters and the
camera projection matrix of the scribbled image, we develop
the idea of 3D scribbles. Let the projection matrix of cam-
era i be defined as Mi = KiRi(I − Ci) where, Ki is the
intrinsic matrix, Ri is the rotation matrix and Ci is the cam-
era center in the world co-ordinate system. Consider, a 2D
scribble point s1,j seen from the first camera, on a segment

which corresponds to the plane l parameterized by [n̂l dl]

where, n̂l is the plane normal and dl is the plane constant.
The projection of this scribble point on another image seen
from the second camera (s2,j) is given by,

s2,j = K2R2

(( (−dl − n̂l.C1)

n̂l.([K1R1]−1s1,j)
[K1R1]

−1s1,j + C1

)
− C2

)

We take care to avoid warping the scribbles onto oc-
cluded planes by using the scene geometry and camera pose.
For example, we consider the warped scribbles only on the
planes visible from a particular view.

Scene co-segmentation. The resulting scribbles on the im-
ages are as shown in Fig. 6c. Using these scribbles as node
constraints on all the images, we extend the energy mini-
mization based multi-class labeling described in Section 4.1
to all the images thereby achieving co-segmentation of all
the images into the multiple planar surfaces Fig. 6d.

We use the back-projection algorithm to evaluate the point
of intersection of a ray from the camera center through ev-
ery pixel on the image plane, and the estimated 3D surface.
Using these 3D points, we generate a mesh for the scene
with the corresponding image texture and render a texture
mapped planar reconstruction of the scene as shown in Fig.
5d, enabling pleasing fly-throughs.
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(a) (b) (c) (d) (e)

Fig. 7: Outdoor scene with occluding non-planar object: (a) Input images (image selected by user shown in yellow box);
(b) User interactions; (c) Resulting scene segmentation with the additional interactions to indicate surface connectedness
(white scribbles shown in black circles) and non-planar objects (magenta scribble shown in blue scribble); (d) Object co-
segmentation (foreground non-planar object in yellow); (e) Scene co-segmentation by using 3D scribbles to propagate scene
geometry.

(a) (b) (c) (d)

Fig. 8: Indoor scene with occluding non-planar object: (a) Input images (image selected by user shown in yellow box); (b) Non-planar object
co-segmentation; (c) Final scene co-segmentation; (d) Novel views of the reconstruction with volumetric rendering of the person.

4.3.3 Rendering non-planar objects in planar scenes

The algorithm thus far renders a planar reconstruction of the
scene. In case of non-planar objects in the scene, we get an
input from the user to indicate these objects, as shown in
the blue ellipse in Fig. 7c. This tells the algorithm which
surface and node constraints correspond to the non-planar
object. Note that recent automatic approaches (Gallup et al,
2010; Lafarge et al, 2010) can also be used to identify non-
planar regions. We estimate an approximate planar proxy for
the object, which helps position the object as part of the ren-
dered scene. We then use the algorithm described in Section
4.2 to obtain a visual hull of the non-planar object, which is
rendered as part of the scene using an independent mesh. We
note that one can also use recent unsupervised algorithms to
obtain a co-segmentation of the foreground object (Kowdle
et al, 2012b) albeit with some user input to indicate the ob-
ject of interest in case of multiple foreground objects in the
scene.

The scene co-segmentation allows us to create a com-
posite texture map for the scene covering up holes due to
the occluding non-planar object as shown in Fig. 9a. The al-
gorithm renders the non-planar objects as part of the planar
scene as we show with the tree in the outdoor scene in Fig.
9b and the person in the indoor scene in Fig. 8. Once the
algorithm generates the 3D reconstruction, the user can pro-
vide more scribbles to indicate new or previously occluded
planes, and improve the result, thus closing the loop on our

interactive 3D reconstruction algorithm that is initiated by
the user via node constraints. Please see video summary4

with fly-through of the 3D reconstructions. More results and
comparisons are available in Kowdle et al (2011a).

(a) (b)

Fig. 9: Non-planar objects: (a) Composite texture map for
the scene (top) allows covering up holes due to occlusions
(ellipse); (b) Novel views of the reconstruction with a volu-
metric model of the tree.

5 Computational engine guides the user

In our alternate algorithm, we intend to accept edge con-
straints from the user. Therefore, we need a smart computa-
tional engine that can automatically estimate the 3D struc-
ture of the scene and accept the user input across edges
when, and where needed. We do so using an active-learning

4 http://chenlab.ece.cornell.edu/projects/Interactive 3D
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Fig. 11: Edge constraints. The cyan nodes illustrate the
nodes the computational engine is uncertain about. The
computation engine guides the user to provide support con-
straints for the uncertain nodes. The blue, white and red
scribbles across the yellow edges in the graph illustrate the
edge constraints provided by the user to provide support for
the cyan nodes (guided by the computational engine). The
nodes with the colored border illustrate the confident su-
perpixels within each box that provide support for the cyan
nodes. More description about the edge constraints and in-
corporating them into the framework is in Section 5.

algorithm. We refer to Fig. 1 and consider the ingredients for
an active-learning algorithm in the context of image-based
modeling. The integral components are: an automatic 3D re-
construction algorithm (computational engine); an approach
to quantify the uncertainty of the algorithm and sample the
most informative queries for user feedback; the human or-
acle who provides suitable interactions in response to the
query; and lastly, an approach to seamlessly incorporate the
feedback from the user into the algorithm. We describe each
of the above aspects with respect to our algorithm in detail
in the following sections.

5.1 Automatic 3D reconstruction algorithm

We develop a piecewise planar 3D reconstruction algorithm
described below using successful ideas from recent works
(Sinha et al, 2009; Furukawa et al, 2009; Micusı́k and Kosecká,
2010; Gallup et al, 2010).

5.1.1 Dense plane hypothesis generation

We use patch-based multiview stereo (PMVS) by Furukawa
and Ponce (2009) as a pre-processing step, which compared
to the sparse point cloud from SfM (Snavely et al, 2006),
provides a much denser set of points that span the scene.
Similar to Sinha et al (2009), we hypothesize dominant planes
by analyzing the distribution of depths of the 3D points along
each hypothesized normal (using the estimated vanishing di-
rections). We break down an image into superpixels5 and use

5 We use graph based segmentation (Felzenszwalb and Hutten-
locher, 2004) to break each image down to about 400 superpixels.

the assumption that every superpixel would lie on a planar
surface (Micusı́k and Kosecká, 2010; Saxena et al, 2009).
Using these superpixels, we hypothesize additional planes
by fitting planes to 3D points that project onto the same su-
perpixel. In practice, we observe that this allows us to add
new planes not hypothesized before as their normals are dif-
ferent from the dominant normal directions.

5.1.2 Energy minimization

We will use this section to establish notation and describe
the automatic piecewise planar reconstruction algorithm, how-
ever the main contribution of this work is in Section 5.2
where we exploit the uncertainty of the algorithm. The dense
plane hypothesis stage results inP (about sixty) planes. These
hypothesized planes serve as the set of discrete labels, which
changes the piecewise planar reconstruction problem to a
multi-label segmentation problem, formulated as an energy
minimization problem over the superpixels. The formulation
is similar to that described in Section 4.1, with the discrete
label space {0, 1, . . . , P − 1}. The unary and pairwise term
for the automatic piecewise planar stereo algorithm is de-
fined below.

Unary term. For a particular view, we compute homogra-
phies for each plane to warp the other images to that view.
We use normalized cross-correlation (NCC) to quantify the
warp error. We refer the reader to Sinha et al (2009) for more
details. We compute the NCC using the superpixel as sup-
port at each pixel as opposed to a constant window. We also
compute a color term that measures the mean color differ-
ence of each superpixel between the original and the warped
image. We use a weighted combination of the two normal-
ized terms as the unary term with the weights tuned by ob-
serving the performance on one of the datasets.

Pairwise term: Co-planar classifier. We introduce an adap-
tive co-planar classifier to model the pairwise term. We learn
a classifier that given a pair of adjacent superpixels returns a
score representing the co-planarity of the superpixels. We
use the geometric context dataset by Hoiem et al (2007)
(with seven ground truth geometric labels). Adjacent super-
pixels with the same geometric label are used as positive
data points while pairs with different labels, are used as neg-
ative data points. We note that adjacent superpixels lying on
occluding ‘parallel’ planes would be bad data points, but, in
practice this does not hinder the performance. We use rela-
tive features (Hoiem et al, 2007) for each pair of superpixels
as the feature vector for each data point and learn a logis-
tic regression model. This model is continuously updated
by the active-learning algorithm. We note that one can also
use laser image data to learn a co-planar classifier by fitting
planes to the laser data to obtain the samples needed (Sax-
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(a) (b) (c) (d)

Fig. 10: (a) shows a set of multiview images of a scene; (b) shows the result of the automatic algorithm, the plane labeling
shown on the top indicates the inaccurate labeling, the novel views of the 3D model are shown at the bottom with black
circles showing the errors. (c) the proposed active-learning algorithm quantifies the uncertainty of the algorithm and detects
the uncertain regions (in cyan), the uncertainty boxes (in orange) with the highlighted edges (in yellow) are used to query
the user for support, the user provides any of three types of interactions within each box via simple scribbles across the
highlighted edge, coplanar scribbles (red), not-coplanar scribbles (white) or not-connected scribbles (blue) as shown; (d)
shows the result of the algorithm after incorporating the information provided by the user, plane labeling on top shows the
improved labeling, the improved reconstruction is shown below through novel viewpoints with yellow circles illustrating the
corrected geometry.

ena et al, 2009). We use a contrast sensitive Pott’s Model to
model the pairwise term.

Eij (Xi, Xj) = I(Xi 6= Xj) exp (−dij) (3)

The pairwise term when adjacent superpixels take different
labels should be high when the contrast dij is low or when
the superpixels are likely to be co-planar and high other-
wise. Thus, given a pair of adjacent superpixels, using the
learnt co-planar classifier, we obtain a score that represents
the likelihood of this pair being co-planar. This score is used
to model the contrast dij (1 - similarity score) in the contrast
sensitive Pott’s model.

We again use graph-cuts (with α-expansion) to compute
the MAP labels for all superpixels (Bagon, 2006; Boykov
and Kolmogorov, 2004; Boykov et al, 2001; Kolmogorov
and Zabih, 2004). This allows us to automatically obtain the
piecewise planar reconstruction of the scene. At this stage
the algorithm has used the observed multiview stereo cues
to obtain the piecewise planar reconstruction albeit with er-
rors as shown in Fig. 10b. The parameters were empirically
chosen using one of the datasets and fixed for all scenes.
This was found to work well in practice. We explain below
our active-learning algorithm to fix the errors in the recon-
struction by putting the user into the loop to provide edge
constraints deriving support from the current 3D reconstruc-
tion of the scene.

5.2 What is the uncertainty?

An important aspect of an active-learning algorithm is to
identify the uncertainty of the algorithm. Intuitively, since

Fig. 12: Synthetic example to illustrate the uncertaintly of
the algorithm (Best viewed in color). Details in Section 5.2.

our algorithm follows an energy minimization framework to
solve the multilabel problem over the graph of superpixels,
we quantify the uncertainty of the algorithm with respect to
the uncertainty in labeling the superpixels. At a high level,
we evaluate the uncertainty of a superpixel in terms of con-
fidence and ambiguity.
Synthetic example. We explain our intuition through a small
synthetic example. Consider, a four node graph with their
4-connected neighborhood as shown in Fig. 12a. Let us sup-
pose the ground truth labeling consists of two labels as shown
in Fig. 12b. Now, Table 12d shows the pairwise term and
Table 12e shows an instance of unary terms which gives the
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ground truth labeling. Note that the unary terms are energies
so the lower the value the more affinity to the label. Also
note that the unary terms for only the two relevant labels
are shown, assume that the energies for the other labels are
high and hence not relevant. In Table 12f we observe that
while the energies of the two labels for node 4 reflect that it
has a preference for Label a, both the energies are very large
(shown in red) indicating a low confidence in the decision. In
Table 12g we observe that two labels have low energies indi-
cating the ambiguity (shown in red) making the correct de-
cision ambiguous. Similarly, in 12h the unary terms (shown
in red) indicate that the node 2 should take the label b but in-
corporating the pairwise term causes the final labeling to be
erroneous as in Fig. 12c. We need an approach to label these
nodes as uncertain. We note that entropy of the unary terms
(say the ratio of the unary terms for these two labels) would
help in case of Table 12g while the entropy in case of Table
12h would be low. We therefore need to incorporate the ef-
fect of pairwise to determine ambiguity. We explain how we
identify these contributors to the uncertainty in detail below.

5.2.1 Confidence

Confidence quantifies how confident the algorithm is to as-
sign a particular plane hypothesis to the superpixel. Low
confidence superpixels represent high uncertainty regions,
for example, occlusions. We obtain these regions via the
energy minimization framework. Motivated by the multi-
view stereo work by Campbell et al (2008), we add an ad-
ditional label to our set of discrete labels and refer to it
as the unknown label. For every superpixel, Xi where i ∈
V (all superpixels), the unary term Ei(Xi) for the unknown
label is set at a constant penalty. Intuitively, this penalty is
large enough so it does not affect the unary terms of the
more confident superpixels while low enough so that low
confidence superpixels are separated out. We use the me-
dian of all the unary terms, which serves as a safe unary term
value in practice for the unknown label. As opposed to us-
ing a simple threshold on the unary terms to determine low
confidence regions, this approach gives the pairwise term an
opportunity to try to derive support,when possible, for the
low confidence superpixels from their neighbors. The super-
pixels that take the unknown label after the minimization are
called uncertain superpixels.

5.2.2 Ambiguity

Ambiguity quantifies the uncertainty of the algorithm be-
tween different plane hypotheses. Superpixels that are am-
biguous about multiple plane hypotheses represent high un-
certainty regions, for example, textureless surfaces, specular
surfaces, inaccurate plane hypotheses, etc. One approach to
determine ambiguous data points in a multi-class labeling

problem would be to analyze the unary terms, using the idea
that the entropy of the unary terms of ambiguous data points
would be high (Jain and Kapoor, 2009). However, the en-
tropy in the unary terms is not sufficient to capture all the
ambiguity because the effects of the pairwise term are ig-
nored. We thus evaluate the ambiguity by determining the
ambiguity of resulting MAP labeling after incorporating the
effect of the pairwise. We do so by using the Graph-cut un-
certainty similar to Batra et al (2011), as explained below.

Let the minimum energyE(X) for the graphG = (V,E)

be Emin. Given the complete set of plane hypotheses (L la-
bels), suppose that for a superpixel Xi the minimum energy
label is li. We flip the label of superpixelXi from li to one of
the the other labels lj in L and recompute the energy, Ei→j
of the labeling. At each such flip stage, we compute the ab-
solute difference between the minimum energy (Emin) and
flip energy (Ei→j),

E(Xi)(∆[i→j]) = |(Emin − Ei→j)| (4)

The ambiguity for every superpixel is computed by mea-
suring the minimum of all such flip energy differences,

E(Xi)ambig = min
j∈L\i

E(Xi)(∆[i→j]) (5)

The intuition behind this is simple. If the algorithm does
not have high ambiguity about assigning a particular plane
hypothesis to a superpixel, the ambiguity energy difference,
E(Xi)ambig should be high. However, if this value is low,
it amounts to ambiguity between different plane hypothe-
ses and hence uncertainty. We normalize the ambiguity en-
ergy differences and threshold that at 95% to obtain the top
5% of ambiguous superpixels. These are again called uncer-
tain superpixels. We note that min-marginals by Kohli and
Torr (2008) could also be used to capture ambiguity albeit
it is computationally very intensive. While our proposed ap-
proach helps us obtain an estimate of uncertainty in an inex-
pensive way we note that the MRF could be solved by prob-
abilistic methods thereby giving us direct measures of un-
certainties. This is however not explored in this manuscript.

5.2.3 Region level uncertainty

In addition to the superpixel level uncertainty, we determine
region level uncertainty. We determine regions (groups of
superpixels) that take a particular independent plane label
but have no support from the 3D point cloud, i.e. none of the
3D points project onto the region, and label them as uncer-
tain. The intuition here is that, a set of superpixels with no
support from the 3D points, taking their own independent
plane label amounts to uncertainty.
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5.2.4 Quantifying uncertainty

Grouping the uncertain superpixels to uncertain regions, we
first identify and highlight all the boundary or support edges
where user interaction might be needed. To ease the inter-
active process, we draw a box (uncertainty box) centered
at this edge, scaled to be the larger of a minimum prede-
fined size or two standard deviations of the edge size. Our
active-learning algorithm then queries the user with the re-
gions with the highest uncertainty or information gain. We
thus need a metric to quantify the uncertainty of each box.

Consider n normals that span all the planes in the scene
(from the initial plane hypothesis step). Superpixels are or-
ganized in increasing order of cost, based on the lowest cost
the superpixel pays for adopting a particular normal (e.g.
C1s, C2s, . . . , Cns). This gives an indication about how cer-
tain it is about taking a particular normal. For a low uncer-
tainty region, the value C1s would be considerably lower
than the next best normal, i.e. C2s.

Consider any orange uncertainty box shown in Fig. 13.
Let Ri indicate the region under a box i that represents the
set of all superpixels part of the uncertain region under the
box i.e., the cyan region. Let Ri,support indicate the region
under box i not part of the uncertain region under the box
i.e., the non-cyan region. Let coplanarity(e) represent the
score of the co-planar classifier for an edge e between two
superpixels, and Ei indicate the set of all edges under a box
i. The uncertainty is quantified through four terms: Cost am-
biguity of the region in the box (A), Confidence of the sup-
port region in the box (F ), Graph-cut uncertainty (GCU ),
and Co-planar classifier uncertainty (CoP ).

Ai = max
s∈Ri

C1s
C2s

(6)

Fi = max
s∈Ri,support

(1− C1s) (7)

GCUi = min
s∈Ri

E(Xs)ambig (8)

CoPi = max
e∈Ei

coplanarity(e) (9)

Our final uncertainly score for each box i, is the sum of
each of the component uncertainties defined in Eqn (6)-(9),
using an equal weighting for each term as a fair setting. In
practice, equal weights work well, as we show in Section
5.4. It is worth pointing out that with more training data we
can learn these weights via cross validation however, since
we use normalized uncertainty components equal weights
worked well in practice. We rank the boxes according to this
score and query the user with the top three uncertainty boxes

Fig. 13: The user can provide three types of interactions to
indicate coplanar regions (red), not-coplanar regions (white)
and not-connected regions (blue) across the highlighted
edge (yellow) within each uncertainty box (orange), to pro-
vide support for the uncertain regions (cyan).

for some support. We note that we can achieve a steady im-
provement by querying the user with only one most uncer-
tain box instead of the top three, however, this would need
additional iterations of the algorithm, requiring additional
user interactions and incurring processing overhead.

5.3 Putting the user in the loop

In our active-learning framework, given the uncertainty boxes,
we wish to obtain user interactions in the form of support
for the uncertain regions or edge constraints and incorporate
this feedback into the algorithm to improve the reconstruc-
tion. The user (oracle) provides one of three scribble based
interactions described below, within each box as shown in
Fig. 13.

Connected and co-planar regions. When the edge high-
lighted in the uncertainty box is an edge between connected
and co-planar regions, i.e. same plane, the user provides a
scribble as support across the edge to indicate co-planarity,
shown as the red scribble (Fig. 13). We use this additional
information to improve the support for the uncertain super-
pixels. This is done by adding long-range edges (non adja-
cent nodes) between the nodes (superpixels) scribbled on by
the user to allow the algorithm to propagate the confident
label to the uncertain superpixels.
Connected but not co-planar regions. In case the high-
lighted edge is an edge between connected but not co-planar
regions, i.e. different planes, the algorithm would need cues
about the edge shared between these two regions in order to
hypothesize a good plane for the uncertain region. We do so
by allowing the user to use two white scribbles across the
edge to indicate the edge segment shared by the planes (Fig.
13). The edge constraint from the user is first used to break
edges of the graph to avoid inaccurate labeling. In addition,
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Fig. 14: Incorporating the user constraints to update the
structure of the graph. Note how the red scribble (connected
and co-planar) adds more edges and strengthens edges; blue
scribble (not-connected) breaks edges in the graph; white
scribble (connected and not co-planar) breaks edges and
hypothesizes a new planar surface for the uncertain region
(blue nodes).

using the confident region we obtain the positions of these
edge points in 3D. Given this information and the hypothe-
sized normals (Section 5.1.1), we use a RANSAC based ap-
proach to find the best fit plane through the 3D edge marked
by the user. We add this new plane hypothesis and estimate
the corresponding unary term as described in Section 5.1.2,
adding hard constraints to ensure that the uncertain super-
pixels choose this new plane. This is therefore both an edge
and a node constraint.

Not connected regions. If the highlighted uncertain edge
corresponds to an edge between not connected regions, i.e.
occluding planes, the user can indicate not-connected re-
gions by using the blue scribble as shown (Fig. 13). We in-
corporate this information into the algorithm by breaking
edges between these superpixels in our graph, thereby hin-
dering these regions from taking the same plane.

Submodularity. In this work the discrete optimization method
we use is Graph Cuts, which requires sub-modularity. Our
discrete labeling formulation is sub-modular since the pair-
wise term uses a contrast sensitive Potts model. The three
user-constraints described above maintain sub-modularity.
The connected and co-planar scribbles (red scribbles) mod-
ulate the pairwise term while maintaining sub-modularity.
The connected but not co-planar scribbles (white scribbles)
and the not connected scribbles (blue scribbles) are similar
in that they both lead to breaking edges in the graph. This
however changes the structure of the graph while still main-
taining sub-modularity since the pairwise terms are still a
contrast sensitive Potts model. Potts model encourages smooth-
ness in the labeling but in some cases we know two re-
gions cannot take the same label. For instance in case of the
not connected scribble we know that they are not-connected
but we do not know what the pairwise relationship between
them is. The idea of breaking the edges is to allow for the
uncertain regions to not-derive support from the other re-
gion. This however does not affect the other edges therefore
maintaining the sub-modularity.

We incorporate all the constraints provided by the user
and suitably reformulate the graph over superpixels as il-
lustrated in Fig. 14. The connected and co-planar scribble
(red) adds more edges to the graph and strengthens the edges
to encourage that the uncertain nodes choose the neighbor-
ing confident node label. The not-connected scribble (blue)
breaks edges in the graph ensuring that information is not
passed between the nodes. Lastly, the connected and not co-
planar scribble (white) breaks edges in the graph to avoid
inaccurate label smoothness across those edges. A new pla-
nar surface is then hypothesized for the uncertain region by
using the uncertain edge as the 2D projection of the line of
intersection of the 3D planes (similar to Section 4.3.1). In
addition to modifying the graph, these constraints provide
more information about the co-planar regions of the scene,
which are used as additional samples to update the co-planar
classifier. This updates the pairwise term, which makes the
co-planar classifier scene specific. Using the energy mini-
mization framework (Section 5.1.2) on this updated graph,
we again obtain the MAP labels for the superpixels, which
gracefully propagates the additional information given by
the user. The process of obtaining uncertain regions, quan-
tifying uncertainty, querying the user for support, and then
updating the algorithm with the additional information is re-
peated using the new result, closing the loop on the active-
learning algorithm.

5.4 Experiments and Results

In this section, we describe the datasets, the evaluation met-
ric we use, and we discuss experiments to quantitatively
evaluate the performance of the proposed active learning ap-
proach via machine experiments and a user study. We also
discuss qualitative improvements in the reconstructions.

5.4.1 Datasets

We collect images spanning six scenes (each with about ten
images) that lack geometric cues such as lines essential to
the automatic algorithm and, include textureless surfaces or
specular surfaces that hinder the performance of the auto-
matic algorithm. We also use two standard datasets that have
been used in prior automatic works (Sinha et al, 2009). We
make all the datasets used in our works (Kowdle et al, 2010,
2011a,b) publicly available6.

5.4.2 Ground truth

We note that recent work address the task of evaluating inter-
active algorithms (Kohli et al, 2012; McGuinness and O’Connor,
2012). We do not have access to the ground-truth depth of

6 http://chenlab.ece.cornell.edu/projects/ActiveLearningFor3D
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these natural scenes however, in order to quantitatively eval-
uate the performance of the proposed active-learning algo-
rithm, we manually label pixel-wise ground truth segmen-
tation of the planes for all the datasets. In addition, to cap-
ture some 3D information we manually label ground truth
normals for each segmented region. The ground truth pixel-
wise segmentation along with their ground truth normals
serves as a good quantitative indicator of the performance
of the algorithm. Given the algorithm’s result, we map each
ground truth region to the largest label in that region in the
algorithm’s result, which agrees with the ground truth nor-
mal. Using these mapped labels we compute the pixel-wise
labeling accuracy for each of the ground truth regions and
compute the average accuracy across the datasets. We note
that this metric can lead to inaccuracies in case of occlud-
ing parallel planes, however, it serves as a good metric to
determine the relative performance in our experiments.

5.4.3 Machine experiments

In order to perform an exhaustive set of experiments to eval-
uate the various design choices, we develop a mechanism
to generate synthetic interactions, which mimic the human
user. For every uncertainty box queried by the algorithm, us-
ing the ground truth segmentation, normals, and the occlu-
sion boundaries (manually labeled), we provide one of three
interactions described in Section 5.3. We note that an itera-
tion in our experiments refers to providing the interactions
in any three distinct locations (e.g. within the three uncer-
tainty boxes in the active-learning experiment).
Performance of active learning. We evaluate the perfor-
mance of the proposed active-learning algorithm against ground
truth sampling (an upper bound) and a random sampling ex-
periment as shown in Fig. 15.

In the ground truth sampling experiment (black curve),
at each iteration, we compute a 2D error map using the al-
gorithm’s output and the ‘ground truth’. The machine inter-
actions are then aimed to provide support to these error re-
gions, beginning from the largest error region, in the order of
decreasing size. This is a good upper bound since at each it-
eration we aim to achieve the best improvement by directly
correcting the errors. The active-learning experiment (blue
curve) evaluates the performance of the proposed algorithm
in which, the machine interactions are guided by the uncer-
tainty boxes indicated by the active-learning algorithm. In
the random sampling experiment (red), we do not use the
proposed active-learning algorithm to choose the uncertain
regions, but instead randomly sample the uncertainty boxes
along the segmentation boundaries.

We see from Fig. 15 that the proposed active-learning
algorithm performs much better than random sampling and,
in addition, performs respectably when compared to the up-
per bound, given that it does not have the luxury to access

Fig. 15: Machine experiments: Our proposed active-learning
algorithm performs significantly better than random sam-
pling and performs respectably compared to ground truth
sampling.

Fig. 16: Machine experiments: The performance using the
various design choices shows that the proposed active-
learning algorithm with the chosen design obtains the best
results, validating our choices. The dashed curves indicate
the performance without the adaptive co-planar classifier
with the same design choices as the solid curve of the same
color. (Section 5.4.3).

ground truth while querying interactions. We also note that
it can achieve the peak performance achieved by the random
sampling at the end of more than twenty iterations in as few
as four iterations.

Evaluating algorithm design choices. We evaluate the de-
sign choices we incorporated into the proposed active-learning
algorithm. We first evaluate the effectiveness of incorpo-
rating ‘ambiguity’ to describe uncertainty. The solid green
curve in Fig. 16 shows the performance of the algorithm
when we ignore ambiguity and only rely on the confidence
measure. In comparison with our active-learning curve (solid
blue), we see that when the algorithm quantifies only the
low confidence regions as uncertain, it fails to capture sev-
eral critical uncertain regions, leading to a very slow and
minimal improvement in performance.

In our algorithm, we use graph-cut uncertainty to cap-
ture ambiguity. We evaluate this choice observing the per-
formance when we use the entropy of the data terms to di-
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rectly detect the ambiguous regions, forced ambiguity curve
(solid magenta) in Fig. 16. This firstly strengthens the im-
portance of ambiguity on comparing with the no ambigu-
ity green curve and in comparison with the active-learning
curve (solid blue) shows that graph-cut uncertainty captures
relevant regions which are missed by the forced ambiguity.

Lastly, we evaluate the adaptive co-planar classifier. In
Fig. 16, comparing the solid curves with the corresponding
dashed curves shows that using the adaptive co-planar clas-
sifier (CoP) gives steady improvement in performance in all
the experiments.

5.4.4 User study

We perform a user study with ten users and three experi-
ments to evaluate the performance of the algorithm. Fig. 17
shows the performance of the users. We restrict the num-
ber of iterations to reduce the effort of the users. The first
experiment is the random interactions experiment, in which
we show the user the segmentation boundaries from the al-
gorithm, however, with no indication about which regions
are erroneous, as shown in Fig. 19a. The user was instructed
to provide three distinct interactions across any edge by ob-
serving the segmentations, with the only cue that each seg-
mented region corresponds to a planar surface according to
the algorithm. The red curve in Fig. 17 shows the perfor-
mance of the users. We observe that the human user per-
forms better than the machine with the random interactions
experiment because the human user has an implicit notion
of the 3D structure of the scene. The annotations from the
user are therefore more meaningful.

The second experiment is the exhaustive examination
experiment. Here, in addition to the segmentation bound-
aries, we color code the normals of each segment as shown
in Fig. 19b. The user was again instructed to provide three
distinct interactions across any edge by observing the errors
in the segmentations, with the normals guiding them towards
erroneous regions. This leads to much better performance as
seen by the black curve in Fig. 17.

The last experiment evaluates the proposed active-learning
algorithm. We show the user the uncertain regions detected
by the algorithm in cyan. We highlight the uncertain edge in
yellow, and draw three orange boxes to query the user for
interactions, as shown in Fig. 19c. The user was instructed
to follow these orange boxes and provide interactions across
the edges to provide support for the cyan regions. The blue
curve in Fig. 17 shows the performance. We observe that the
active-learning algorithm performs much better than random
interactions and performs at par with the exhaustive exam-
ination, indicating that the algorithm effectively guides the
user towards relevant uncertain regions.

We compare the time taken by a user guided by the pro-
posed active learning algorithm vs. an unguided user. We

Fig. 17: User study: The proposed active-learning algorithm
not only out performs random interactions, but performs at
par with exhaustive examination in significantly lower time
(Section 5.4.4).

Fig. 18: User study - time: The proposed active-learning al-
gorithm achieves better performance and significantly faster
(Section 5.4.4).

Fig. 19: The three different user experiments conducted to
evaluate the proposed algorithm (Section 5.4.4).

plot the average accuracy across the time taken in Fig. 18.
The proposed active-learning algorithm achieves better per-
formance and significantly faster (almost 2x speed up).

5.4.5 Qualitative analysis

In Fig. 20, we show improvements in quality of the labeling
and the 3D reconstructions as a result of incorporating the
user interactions using the proposed algorithm7.

Row 1 shows the improved reconstructions in presence
of homogeneous surfaces like the wall and ground; Row
3 shows the improved result in case of an occluding ob-

7 http://chenlab.ece.cornell.edu/projects/ActiveLearningFor3D
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Fig. 20: Qualitative results: (a) and (b) show the plane labeling and, novel views of 3D reconstruction from the automatic
algorithm respectively; (c) and (d) shows the improved results using the active-learning algorithm respectively.

ject (planar approximation) and homogeneous background.
Rows 4 and 5 show the output of the algorithm on public
datasets used in prior work (Sinha et al, 2009). These are
datasets in which the algorithm has strong cues to automat-
ically reconstruct the scene requiring minimal user interac-
tions. These show that our automatic algorithm is not sub-
optimal.

Relying on superpixels can hinder the performance in
some cases. Note, for example, the error near the legs in row
3 due to a narrow superpixel leak. Row 6 demonstrates a
failure case of the algorithm. In this example, there was a
superpixel that leaks from the top of the tree onto the build-
ing. Since the uncertain edge we show the user always fol-
lows the superpixel boundaries, superpixel leaks can affect
the performance. In this case, when queried, the user would
always mark the regions as co-planar, resulting in a part of
the tree labeled as part of the building behind it. However,
we note that the proposed algorithm still performs signifi-
cantly better than the automatic algorithm.

Comparison. We qualitatively compare the performance of
a user guided by the proposed active-learning algorithm with
the performance of an unguided user in Fig. 21. The initial
reconstruction of the scene has errors that are partially fixed
after 8 iterations by constraints provided by the unguided
user. In comparison, the user guided by the proposed active-
learning algorithm achieves a much more accurate recon-
struction twice as fast, after only 5 iterations.

6 Applications

If there is one thing the growing popularity of immersive
virtual environments (like Second-Life® with 6.1 Million
members) and gaming environments (like Project Natal®)
has taught us – it is that people crave personalization. For
example, gamers want to be able to ‘scan’ and use their own
gear (such as skateboards) in a skateboarding game; people
want to be able to take something from the real world (such
as a statue, or your house) into the virtual environment. We
use the proposed idea of putting the user in the loop to de-
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Fig. 21: Qualitative comparison: (a) The initial reconstruc-
tion of the scene, with errors shown in black ellipses; (b)
The result after an unguided user provide interactions for
8 iterations, where errors still exist as shown in black el-
lipses; (c) In comparison, the user guided by the proposed
active-learning algorithm achieves accurate reconstruction
after only 5 iterations. Errors fixed are shown in red ellipses.

velop an easy approach to obtain a 3D model of their object
of interest. In particular, driven by the ubiquitous spread of
mobile devices with touch-screen interfaces, we develop a
mobile application to perform this task.

We give an overview of our mobile application (Kow-
dle et al, 2012a) in Fig. 22. The application uses a client-
server setup and is developed for iOS devices. The client
(the user) captures a video of the object of interest by walk-
ing around the object. This video is then sent to the server
that samples frames from the video, starts running structure-
from-motion to extract the camera parameters and sends the
sampled frames back to the client. The user is now allowed
to flip through the images, select any image and provide
user interactions via the touch-screen to indicate the object
of interest and the background via scribbles. These scrib-
bles are then sent to the server, which performs interactive
co-segmentation, to perform shape-from-silhouette. The co-
segmentation of the object of interest from each view and
the 3D model of the object are now sent back to the client;
which the user can visualize. Please refer our website for a
demo video of the application8.

While augmented reality is a well established applica-
tion that allows for virtually placing novel objects in a scene,
an interesting application of the reconstructed 3D model fol-
lows the recent trend in 3D printing. We use the reconstructed
model to obtain a physical 3D printout of the object9 as
shown in Fig. 23, allowing for an interesting application to

8 http://chenlab.ece.cornell.edu/projects/iModel
9 The 3D printouts were obtained using the online service

http://www.shapeways.com

Fig. 22: iModel: Object of interest 3D modeling on a mobile
device.

Fig. 23: Physical 3D printout of the object of interest ob-
tained using the proposed algorithm. The top row shows the
set of multiview images of the object of interest used to ob-
tain the 3D printout below.

obtain physical 3D models from images of the object cap-
tured in it’s natural environment.

7 Conclusions and future work

In this paper, we have proposed a framework to put the user
in the loop for image-based modeling. Motivated by the re-
cent success in discrete labeling formulation for image-based
modeling we have leveraged the user input as node and edge
constraints for the underlying Markov Random Field. We
have considered algorithms where the user initiates the al-



17

gorithm to indicate the object of interest, allowing for re-
constructing non-planar objects and planar scenes. We pro-
posed a novel active-learning algorithm for piecewise planar
3D reconstruction where the computational engine guides
the user constraints. The algorithm tries to reconstruct the
scene automatically, quantifies uncertainty, and asks the user
to provide support for the most uncertain regions via sim-
ple and intuitive interactions (coplanar, not-coplanar, and
not-connected scribbles). The algorithm incorporates these
constraints to obtain better reconstructions, thus closing the
loop on the interactive algorithm. We show through a user
study and machine experiments that the proposed algorithm
not only improves the reconstruction, but does so in signif-
icantly lower time than exhaustive examination by the user.
In addition, we have demonstrated some end user applica-
tions including object of interest 3D modeling on a mobile
device and 3D printing an object of interest.

Future work. We believe that the proposed idea of active-
learning for putting the user in the loop has a lot of po-
tential beyond piecewise planar reconstructions. The frame-
work of guiding the user to provide feedback to obtain bet-
ter reconstructions can, not only be extended to multi-view
stereo approaches (in which, other forms of interactions can
aid dense surface reconstruction), but can also be used with
works trying to obtain a 3D reconstruction from a single im-
age, which has an inherent learning framework. The active-
learning framework incorporates the positive aspects of both
the automatic as well as the interactive algorithms, using the
scene specific user inputs when and where needed, to ren-
der improved reconstructions. We note that the algorithms
proposed in this paper explore putting the user in the loop
for image-based modeling after the images have been cap-
tured i.e., post capture. We can also explore how we can put
the user in the loop at capture time. For example, guide the
user at capture time, and observe the physical interactions
between the user (or say a robot operated by the user) and
the scene at capture time to recover the 3D structure of the
scene. These are interesting future directions for putting the
user in the loop for image-based modeling.
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