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Abstract

This paper presents an active-learning algorithm for
piecewise planar 3D reconstruction of a scene. While pre-
vious interactive algorithms require the user to provide te-
dious interactions to identify all the planes in the scene, we
build on successful ideas from the automatic algorithms and
introduce the idea of active learning, thereby improving the
reconstructions while considerably reducing the effort. Our
algorithm first attempts to obtain a piecewise planar recon-
struction of the scene automatically through an energy min-
imization framework. The proposed active-learning algo-
rithm then uses intuitive cues to quantify the uncertainty of
the algorithm and suggest regions, querying the user to pro-
vide support for the uncertain regions via simple scribbles.
These interactions are used to suitably update the algo-
rithm, leading to better reconstructions. We show through
machine experiments and a user study that the proposed ap-
proach can intelligently query users for interactions on in-
formative regions, and users can achieve better reconstruc-
tions of the scene faster, especially for scenes with texture-
less surfaces lacking cues like lines which automatic algo-
rithms rely on.

1. Introduction

There has been significant progress in recovering 3D
structure of a scene given a few images of the scene from
multiple poses. While a number of automatic algorithms
[13–15, 24–26, 30, 32] have been shown to generate good
models, the cues in a number of scenes are not sufficient to
hypothesize a good structure of the scene. In particular, tex-
tureless surfaces, specular surfaces, and a lack of geometric
cues such as lines, hinders their performance.

On the other hand, when we humans look at a scene we
can much better discern the geometric structure that under-
lies the pixel data we view. Interactive 3D reconstruction
algorithms try to exploit this, by requiring the user to pro-
vide interactions in the form of line drawings, 2D polygons,
etc. [1, 3, 9, 10, 17, 31]. Such approaches are not only ex-
tremely cumbersome for a user, but also seem unnecessary
given the performance of the automatic algorithms.

In this paper, we develop an active-learning algorithm
for piecewise planar 3D reconstruction. We begin with
patch based multiview stereo [14] as a good framework
to reconstruct the scene. Using successful ideas from
piecewise planar multiview stereo [24, 30], we cast the 3D
reconstruction problem as an energy minimization problem
over a graph of superpixels, with an adaptive co-planar
classifier to model the smoothness in the graph. Inspired by
the traditional definition of active learning, we quantify the
uncertainty of the algorithm and propose high entropy re-
gions for the user to provide interactions. User interactions
provide support for these regions, update the co-planar
classifier model and lead to improved reconstructions, and
close the loop on the active-learning algorithm. Figure 1
gives an overview of the algorithm.

Contributions. Our primary contributions are:
• We believe we are the first to propose an active-

learning framework for 3D reconstruction.
• We use very simple interactions from the user (co-

planar, not-coplanar, and not-connected scribbles),
which are very intuitive for any user to follow.

• We introduce a new adaptive co-planar classifier
to model the smoothness in an energy-minimization
framework.

• We demonstrate through user studies and machine ex-
periments that our proposed active-learning algorithm
significantly improves both the 3D reconstruction and
the speed with which it is produced.

Organization. The rest of the paper is organized as fol-
lows: Section 2 discusses related work; Section 3 describes
the different aspects of our active-learning algorithm in de-
tail; Section 4 discusses the quantitative and qualitative re-
sults of our algorithm through machine experiments and
user studies; Finally, Section 5 concludes the paper.

2. Related Work
Automatic algorithms. 3D reconstruction from multiple
images is an active research topic in the computer vision
community. There has been significant success with au-
tomatic algorithms [13–15, 24–26, 30, 32]. While some of
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Figure 1: (a) shows a set of multiview images of a scene; (b) shows the result of the automatic algorithm, the plane labeling shown on the top indicates
the inaccurate labeling, the novel views of the 3D model are shown at the bottom with black circles showing the errors. (c) the proposed active-learning
algorithm quantifies the uncertainty of the algorithm and detects the uncertain regions (in cyan), the uncertainty boxes (in orange) with the highlighted
edges (in yellow) are used to query the user for support, the user provides any of three types of interactions within each box via simple scribbles across the
highlighted edge, coplanar scribbles (red), not-coplanar scribbles (white) or not-connected scribbles (blue) as shown; (d) shows the result of the algorithm
after incorporating the information provided by the user, plane labeling on top shows the improved labeling, the improved reconstruction is shown below
through novel viewpoints with yellow circles illustrating the corrected geometry. (Best viewed in color).

these works [25,26] are geared towards video, some [15,32]
are geared towards unordered photo collections on the inter-
net. Most of these works require a large photo collection.

When the number of input images is restricted, these au-
tomatic algorithms fail to produce a dense reconstruction. A
number of multiview stereo algorithms try to obtain a dense
depth map for the scene from a set of images. A survey of
these methods has been provided by Seitz et al. [28]. With
a small set of images the reconstruction is incomplete, leav-
ing holes on textureless surfaces and specular reflections.
Planar approximations to the scene [12, 24, 30] help obtain
more visually pleasing reconstructions. However, these al-
gorithms use image features such as strong edges and lines,
which may be absent in textureless surfaces. This has led to
interactive algorithms.
Interactive algorithms. There have been many interactive
3D reconstruction algorithms [1,3,9,10,17,23,31,34]. The
user interactions required range from providing feature cor-
respondence, to providing plane boundaries and line mod-
els of the scene. Debevec et al. proposed an algorithm to
reconstruct man-made architectures by marking the edges
in the structure and by exploiting symmetry in man-made
structures [10]. Hengel et al. [17] and Sinha et al. [31] re-
quire the user to provide a detailed line model of the object
or marking all the 2D plane polygons in the scene, respec-
tively; and reconstruct the scene by incorporating geomet-
ric information from structure-from-motion. Kowdle et al.
[23] used user interactions in an interactive co-segmentation
setup for object-of-interest 3D modeling. Srivastava et al.
also used user interactions in the form of scribbles to help
improve the 3D reconstruction obtained from a single im-
age [33]. These interactive algorithms perform better than
automatic algorithms; however, they require very involved
interactions from the user, which can be quite tedious.
Active-learning algorithms. Active learning is a well-
established subfield of machine learning [29], which has
been shown to benefit a number of computer vision ap-
plications such as object categorization [20], image re-
trieval [16, 37], video classification [36], dataset annota-
tion [8], and interactive co-segementation [4]; maximizing

the knowledge gain while valuing the user effort [35].
Batra et al. [4] proposed an approach for interactive

co-segmentation where, starting from the user interactions
(scribbles) to identify the object-of-interest (OOI), the al-
gorithm exploits a number of cues using the scribbles, and
identifies informative regions to request the user for more
interactions. Interactive 3D reconstruction, however, is not
a trivial extension of this binary problem to multi-class seg-
mentation. Rich information is already embedded in mul-
tiple images of a scene, which an automatic algorithm can
fully utilize. However, the automatic algorithms fall short
where texture or geometry cues cannot be easily identified
from the images. Therefore, we formulate interactive 3D
reconstruction as an error-correction and learning problem,
where active-learning identifies uncertain regions, requests
the user to provide geometric cues, and adapts the algorithm
for the specific scene based on the user interactions.

3. Active-learning Algorithm
We refer to Figure 2 and consider the ingredients needed

for an active-learning algorithm in the context of 3D recon-
struction. The integral components are: an automatic 3D
reconstruction algorithm with the ability to incorporate user
feedback; an approach to quantify the uncertainty of the al-
gorithm and sample the most informative queries for user
feedback; the human oracle who provides suitable interac-
tions in response to the query; and lastly, an approach to
seamlessly incorporate the feedback from the user into the
algorithm. We describe each of the above aspects with re-
spect to our algorithm in detail in the following sections.

3.1. Automatic 3D reconstruction algorithm

We develop a piecewise planar 3D reconstruction algo-
rithm using successful ideas from recent works [24, 30].

3.1.1 Dense plane hypothesis generation

We use patch-based multiview stereo (PMVS) by Furukawa
et al. [14] as a preprocessing step, which although not as
accurate as the sparse point cloud from SFM [32], provides
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Figure 2: Active learning for 3D reconstruction.

a much denser set of points that span the scene. Similar
to [30], we hypothesize dominant planes by analyzing the
distribution of depths of the 3D points along each hypothe-
sized normal (hypothesized using the vanishing directions).
We break down an image into superpixels 1 and use the as-
sumption that every superpixel would lie on a planar sur-
face [24, 27]. Using these superpixels, we hypothesize ad-
ditional planes by fitting planes to 3D points that project
onto the same superpixel. In practice, we observe that this
allows us to add new planes not hypothesized before as their
normals are different from the dominant normal directions.

3.1.2 Energy minimization

The dense plane hypothesis stage results in about sixty
planes. This dense set of discrete labels changes the piece-
wise planar reconstruction problem to a multi-label segmen-
tation problem, formulated as an energy minimization prob-
lem over the superpixels and solved via graph cuts.

We build a graph, G = (V,E), over the superpixels,
with edges connecting adjacent superpixels. The image X
is represented as a collection of n nodes (superpixels) to
be labeled, X = {X1, X2, . . . , Xn}. We define an energy
function over the image as follows:

E(X) =
∑
i∈V

Ei(Xi) + λ
∑

(i,j)∈E

Eij (Xi, Xj) (1)

where, Ei(Xi) is the data term indicating the cost of
assigning a superpixel to one of the labeled classes, and
Eij(Xi, Xj) is the smoothness term used for penalizing
label disagreement between neighbors.

Data term. For a particular view, we compute homogra-
phies for each plane to warp the other images to that view.
We use normalized cross-correlation (NCC) to quantify the
warp error. We refer the reader to [30] for more details. We
compute the NCC using the superpixel as support at each
pixel as opposed to a constant window. We also compute a
color term that measures the mean color difference of each
superpixel between the original and the warped image. We
use a weighted combination of the two normalized terms as
the data term with the weights tuned by observing the per-
formance on one of the datasets.
Smoothness term: Co-planar classifier. We introduce an
adaptive co-planar classifier to model the smoothness term.

1We use Felzenswalb and Huttenlocher’s segmentation algorithm [11]
to break each image down to about 400 superpixels.

We learn a classifier that given a pair of adjacent superpix-
els returns a score representing the co-planarity of the su-
perpixels. We use the geometric context dataset by Hoiem
et al. [18] (with seven ground truth geometric labels). Ad-
jacent superpixels with the same geometric label are used
as positive data points while pairs with different labels, are
used as negative data points. We note that adjacent super-
pixels lying on occluding ‘parallel’ planes would be bad
data points, but, in practice this does not hinder the perfor-
mance. We use relative features (difference features) such
as color, texture, and shape features (more details about fea-
tures in [18]) for each pair of superpixels as the feature vec-
tor for each data point and learn a logistic regression model.
This model is continuously updated by the active-learning
algorithm. We note that one can also use laser image data to
learn a co-planar classifier by fitting planes to the laser data
to obtain the samples needed [27].

We use a Contrast Sensitive Pott’s Model to model the
smoothness term.

Eij (Xi, Xj) = I(Xi 6= Xj) exp (−βdij) (2)

The smoothness penalty when adjacent superpixels take
different labels should be high when the contrast dij is
low or when the superpixels are likely to be co-planar and
high otherwise. Thus, given a pair of adjacent superpixels,
using the learnt co-planar classifier, we obtain a score that
represents the likelihood of this pair being co-planar. This
score is used to model the contrast dij (1 - similarity score)
in the Contrast Sensitive Pott’s Model.

Finally, we use graph-cuts (with α-expansion) to com-
pute the MAP labels for all superpixels, using the imple-
mentation by Bagon [2] and Boykov et al. [5, 6, 22].

3.2. What is the uncertainty?

An important aspect of an active-learning algorithm is to
identify the uncertainty of the algorithm. Intuitively, since
our algorithm follows an energy minimization framework to
solve the multilabel problem over the graph of superpixels,
we quantify the uncertainty of the algorithm with respect to
the uncertainty in labeling the superpixels. At a high level,
we evaluate the uncertainty of a superpixel in terms of con-
fidence and ambiguity, described in detail below.

3.2.1 Confidence

Confidence quantifies how confident the algorithm is to as-
sign a particular plane hypothesis to the superpixel. Low
confidence superpixels represent high uncertainty regions,
for example, occlusions. We obtain these regions via the
energy minimization framework.

Motivated by the multi-view stereo work by Campbell
et al. [7], we add an additional label to our set of discrete
labels and refer to it as the unknown label. For every su-
perpixel, Xi where i ∈ V (all superpixels), the data term



Ei(Xi) for the unknown label is set at a constant penalty.
Intuitively, this penalty is large enough so it does not af-
fect the data terms of the more confident superpixels while
low enough so that low confidence superpixels are separated
out. We use the median of all the data terms, which serves
as a safe data term value in practice for the unknown label.
As opposed to using a simple threshold on the data terms
to determine low confidence regions, this approach gives
the smoothness term an opportunity to try to derive sup-
port,when possible, for the low confidence superpixels from
their neighbors. The superpixels that take the unknown label
after the minimization are called uncertain superpixels.

3.2.2 Ambiguity

Ambiguity quantifies the uncertainty of the algorithm be-
tween different plane hypotheses. Superpixels that are am-
biguous about multiple plane hypotheses represent high un-
certainty regions, for example, textureless surfaces, spec-
ular surfaces, inaccurate plane hypotheses, etc. One ap-
proach to determine ambiguous data points in a multiclass
labeling problem would be to analyze the data terms, using
the idea that the entropy of the data terms of ambiguous data
points would be high [19]. However, the entropy in the data
terms is not sufficient to capture all the ambiguity because
the effects of the smoothness term are ignored. We thus
evaluate the ambiguity by determining the ambiguity of re-
sulting MAP labeling after incorporating the effect of the
smoothness. We do so by using the Graph-cut uncertainty
similar to Batra et al. [4], as explained below.

Let the minimum energy E(X) for the graph G =
(V,E) be Emin. Given the complete set of plane hypothe-
ses (L labels), suppose that for a superpixel Xi the mini-
mum energy label is li. We flip the label of superpixel Xi

from li to one of the the other labels lj in L and recompute
the energy, Ei→j of the labeling. At each such flip stage,
we compute the absolute difference between the minimum
energy (Emin) and flip energy (Ei→j),

E(Xi)(∆[i→j]) = |(Emin − Ei→j)| (3)

The ambiguity for every superpixel is computed by mea-
suring the minimum of all such flip energy differences,

E(Xi)ambig = min
j∈L\i

E(Xi)(∆[i→j]) (4)

The intuition behind this is simple. If the algorithm does
not have high ambiguity about assigning a particular plane
hypothesis to a superpixel, the ambiguity energy difference,
E(Xi)ambig should be high. However, if this value is low,
it amounts to ambiguity between different plane hypotheses
and hence uncertainty. We normalize the ambiguity energy
differences and threshold that at 95% to obtain the top 5%
of ambiguous superpixels. These are again called uncertain
superpixels. We note that min-marginals by Kohli et al. [21]
could also be used to capture ambiguity.

3.2.3 Region level uncertainty

In addition to the superpixel level uncertainty, we determine
region level uncertainty. We determine regions (groups of
superpixels) that take a particular independent plane label
but have no support from the 3D point cloud, i.e. none of
the 3D points project onto the region, and label them as un-
certain. The intuition here is that, a set of superpixels with
no support from the 3D points, taking their own indepen-
dent plane label amounts to uncertainty.

3.2.4 Quantifying uncertainty

Grouping the uncertain superpixels to uncertain regions, we
first identify and highlight all the boundary or support edges
where user interaction might be needed. To ease the inter-
active process, we draw a box (uncertainty box) centered
at this edge, scaled to be the larger of a minimum prede-
fined size or two standard deviations of the edge size. Our
active-learning algorithm then queries the user with the re-
gions with the highest uncertainty or information gain. We
thus need a metric to quantify the uncertainty of each box.

Consider n normals that span all the planes in the scene
(from the initial plane hypothesis step). Superpixels are or-
ganized in increasing order of cost, based on the lowest cost
the superpixel pays for adopting a particular normal (e.g.
C1s, C2s, . . . , Cns). This gives an indication about how
certain it is about taking a particular normal. For a low un-
certainty region, the valueC1s would be considerably lower
than the next best normal, i.e. C2s.

Let Ri indicate the region under a box i that repre-
sents the set of all superpixels part of the uncertain region
under the box. Let Ri,support indicate the region under
box i not part of the uncertain region under the box. Let
coplanarity(e) represent the score of the co-planar classi-
fier for an edge e between two superpixels, and Ei indicate
the set of all edges under a box i. The uncertainty is quan-
tified through four terms: Ambiguity of the region in the
box (A), Confidence of the support region in the box (F ),
Graph-cut uncertainty (GCU ), and Co-planar classifier un-
certainty (CoP ).

Ai = max
s∈Ri

C1s
C2s

(5)

Fi = max
s∈Ri,support

(1− C1s) (6)

GCUi = max
s∈Ri

E(Xs)ambig (7)

CoPi = max
e∈Ei

coplanarity(e) (8)

Our final uncertainly score for box i, Uncertaintyi, is the
sum of each of the component uncertainties defined in Eqn
(5)-(8), using an equal weighting for each term as a fair
setting. In practice, equal weights work well, as we show
in Section 4. We rank the boxes according to this score and
query the user with the top three uncertainty boxes for some



support. We note that we can achieve a steady improvement
by querying the user with only one most uncertain box in-
stead of the top three, however, this would need additional
iterations of the algorithm, requiring additional user inter-
actions and incurring processing overhead.

3.3. Putting the user in the loop

In our active-learning framework, given the uncertainty
boxes, we wish to obtain user interactions in the form
of support for the uncertain regions and incorporate this
feedback into the algorithm to improve the reconstruction.
The user provides one of three scribble based interactions
described below, within each box as shown in Figure 3.
Connected and co-planar regions. When the edge high-
lighted in the uncertainty box is an edge between connected
and co-planar regions, i.e. same plane (Box 1 in Figure 3),
the user provides a scribble as support across the edge to
indicate co-planarity, shown as the red scribble. We use this
additional information to improve the support for the uncer-
tain superpixels. This is done by adding long-range connec-
tions (non adjacent nodes) between the nodes (superpixels)
scribbled on by the user to allow the algorithm to propagate
the confident label to the uncertain superpixels.
Connected but not co-planar regions. In case the high-
lighted edge is an edge between connected but not co-planar
regions, i.e. different planes (Box 2 in Figure 3), the algo-
rithm would need cues about the edge shared between these
two regions in order to hypothesize a good plane for the
uncertain region. We do so by allowing the user to use two
white scribbles across the edge to indicate the edge segment
shared by the planes. Using the confident region, we can
obtain the positions of these edge points in 3D. Given this
information and the hypothesized normals (Section 3.1.1),
we use a RANSAC based approach to find the best fit plane
through the 3D edge marked by the user. We add this new
plane hypothesis and estimate the corresponding data term
as described in Section 3.1.2, adding hard constraints to en-
sure that the uncertain superpixels choose this new plane.
Not connected regions. If the highlighted uncertain edge
corresponds to an edge between not connected regions, i.e.
occluding planes (Box 3 in Figure 3), the user can indi-
cate not-connected regions by using the blue scribble as
shown. We incorporate this information into the algorithm
by breaking edges between these superpixels in our graph,
thereby hindering these regions from taking the same plane.

We incorporate all the interactions provided by the user
and suitably reformulate the graph over superpixels. In ad-
dition to modifying the graph, we use this information as
additional samples to update the co-planar classifier, which
updates the smoothness term. Using the energy minimiza-
tion framework (Section 3.1.2), we again obtain the MAP
labels for the superpixels, which gracefully propagates the
additional information given by the user. The process of ob-
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Figure 3: The user can provide three types of interactions to indicate
coplanar regions (red), not-coplanar regions (white) and not-connected re-
gions (blue) across the highlighted edge (yellow) within each uncertainty
box (orange), to provide support for the uncertain regions (in cyan). (Best
viewed in color).
taining uncertain regions, quantifying uncertainty, querying
the user for support, and then updating the algorithm with
the additional information is repeated using the new result,
closing the loop on the active-learning algorithm.

4. Experiments and Results
In this section, we describe the datasets, the evaluation

metric we use, and we discuss experiments to quantitatively
evaluate the performance of the proposed active learning ap-
proach via machine experiments and a user study. We also
discuss qualitative improvements in the reconstructions.

4.1. Datasets

We collect images spanning six scenes (each with about
ten images) that lack geometric cues such as lines essential
to the automatic algorithm and, include textureless surfaces
or specular surfaces that hinder the performance of the au-
tomatic algorithm. We also use two standard datasets that
have been used in prior automatic works [30].

4.2. Ground truth

To quantitatively evaluate the performance of the pro-
posed active-learning algorithm, we first obtain pixel-wise
ground truth segmentation of the planes for all the datasets.
To capture some 3D information, we label ground truth nor-
mals for each segmented region. The ground truth pixel-
wise segmentation along with their ground truth normals
serves as a good quantitative indicator of the performance
of the algorithm. Given the algorithm’s result, we map each
ground truth region to the largest label in that region in the
algorithm’s result, which agrees with the ground truth nor-
mal. Using these mapped labels we compute the pixel-wise
labeling accuracy for each of the ground truth regions and
compute the average accuracy across the datasets. We note
that this metric can lead to inaccuracies in case of occlud-
ing parallel planes, however, it serves as a good metric to
determine the relative performance in our experiments.

4.3. Machine experiments

In order to perform an exhaustive set of experiments to
evaluate the various design choices, we develop a mech-
anism to generate synthetic interactions, which mimic the
human user. For every uncertainty box queried by the algo-
rithm, using the ground truth segmentation, normals, and
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Figure 4: Machine experiments: Our proposed active-learning algo-
rithm performs significantly better than random sampling and performs
respectably compared to ground truth sampling. (Best viewed in color).
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Figure 5: Machine experiments: Our proposed active-learning algorithm
produces the most accurate reconstructions, validating our design choices.
(Section 4.3). (Best viewed in color).

the occlusion boundaries (manually labeled), we provide
one of three interactions described in Section 3.3. We note
that an iteration in our experiments refers to providing the
interactions in any three distinct locations (e.g. within the
three uncertainty boxes in the active-learning experiment).
Performance of active learning. We evaluate the perfor-
mance of the proposed active-learning algorithm against
ground truth sampling (an upper bound) and a random sam-
pling experiment as shown in Figure 4.

In the ground truth sampling experiment (black curve),
at each iteration, we compute a 2D error map using the al-
gorithm’s output and the ‘ground truth’. The machine in-
teractions are then aimed to provide support to these error
regions, beginning from the largest error region, in the order
of decreasing size. This is a good upper bound since at each
iteration we aim to achieve the best improvement by directly
correcting the errors. The active-learning experiment (blue
curve) evaluates the performance of the proposed algorithm
in which, the machine interactions are guided by the uncer-
tainty boxes indicated by the active-learning algorithm. In
the random sampling experiment (red), we do not use the
proposed active-learning algorithm to choose the uncertain
regions, but instead randomly sample the uncertainty boxes
along the segmentation boundaries.

We see from Figure 4 that the proposed active-learning
algorithm performs much better than random sampling
and, in addition, performs respectably when compared to
the upper bound, given that it does not have the luxury to
access ground truth while querying interactions. We also
note that it can achieve the peak performance achieved
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Figure 6: User study: The proposed active-learning algorithm not only
out performs random interactions, but performs at par with exhaustive ex-
amination in significantly lower time (Section 4.4). (Best viewed in color).

by the random sampling at the end of more than twenty
iterations in as few as four iterations.

Evaluating algorithm design choices. We evaluate the
design choices we incorporated into the proposed active-
learning algorithm. We first evaluate the effectiveness of
incorporating ‘ambiguity’ to describe uncertainty. The solid
green curve in Figure 5 shows the performance of the algo-
rithm when we ignore ambiguity and only rely on the con-
fidence measure. In comparison with our active-learning
curve (solid blue), we see that when the algorithm quanti-
fies only the low confidence regions as uncertain, it fails to
capture several critical uncertain regions, leading to a very
slow and minimal improvement in performance.

In our algorithm, we use graph-cut uncertainty to cap-
ture ambiguity. We evaluate this choice observing the per-
formance when we use the entropy of the data terms to di-
rectly detect the ambiguous regions, forced ambiguity curve
(solid magenta) in Figure 5. This firstly strengthens the im-
portance of ambiguity on comparing with the no ambigu-
ity green curve and in comparison with the active-learning
curve (solid blue) shows that graph-cut uncertainty captures
relevant regions which are missed by the forced ambiguity.

Lastly, we evaluate the adaptive co-planar classifier. In
Figure 5, comparing the solid curves with the correspond-
ing dashed curves shows that using the adaptive co-planar
classifier (CoP) gives steady improvement in performance
in all the experiments.

4.4. User study

We perform a user study with ten users and three experi-
ments to evaluate the performance of the algorithm. Figure
6 shows the performance of the users. We restrict the num-
ber of iterations to reduce the effort of the users.

The first experiment is the random interactions experi-
ment, in which we show the user the segmentation bound-
aries from the algorithm, however, with no indication about
which regions are erroneous, as shown in Figure 7a. The
user was instructed to provide three distinct interactions
across any edge by observing the segmentations, with the
only cue that each segmented region corresponds to a pla-
nar surface according to the algorithm. The red curve in
Figure 6 shows the performance of the users.



The second experiment is the exhaustive examination ex-
periment. Here, in addition to the segmentation boundaries,
we color code the normals of each segment as shown in Fig-
ure 7b. The user was again instructed to provide three dis-
tinct interactions across any edge by observing the errors in
the segmentations, with the normals guiding them towards
erroneous regions. This leads to much better performance
as seen by the black curve in Figure 6.

The last experiment evaluates the proposed active-
learning algorithm. We show the user the uncertain regions
detected by the algorithm in cyan. We highlight the uncer-
tain edge in yellow, and draw three orange boxes to query
the user for interactions, as shown in Figure 7c. The user
was instructed to follow these orange boxes and provide in-
teractions across the edges to provide support for the cyan
regions. The blue curve in Figure 6 shows the performance.

The active-learning algorithm performs much better than
random interactions and performs at par with the exhaus-
tive examination, indicating that the algorithm effectively
guides the user towards relevant uncertain regions. In ad-
dition, the average time taken by the user for each iteration
reduced from 35.4 seconds in the exhaustive examination
experiment to 23.2 seconds in the active-learning experi-
ment, indicating that we achieve performance at par with
exhaustive examination in significantly lower time.

4.5. Qualitative analysis

In Figure 8, we show improvements in quality of the la-
beling and the 3D reconstructions as a result of incorporat-
ing the user interactions using the proposed algorithm 2.

Row 1 shows the improved reconstructions in presence
of homogeneous surfaces like the wall and ground; Row
3 shows the improved result in case of an occluding ob-
ject (planar approximation) and homogeneous background.
Rows 4 and 5 show the output of the algorithm on pub-
lic datasets used in prior work [30]. These are datasets in
which the algorithm has enough cues to automatically re-
construct the scene and required minimal user interactions.
These show that our automatic algorithm is not sub-optimal.

Relying on superpixels can hinder the performance in
some cases. Note, for example, the error near the legs in
row 3 due to a narrow superpixel leak. Row 6 demonstrates
a failure case of the algorithm. In this example, there was a
superpixel that leaks from the top of the tree onto the build-
ing. Since the uncertain edge we show the user always fol-
lows the superpixel boundaries, superpixel leaks can affect
the performance. In this case, when queried, the user would
always mark the regions as co-planar, resulting in a part of
the tree labeled as part of the building behind it. However,
we note that the proposed algorithm still performs signifi-
cantly better than the automatic algorithm.

2Video: http://chenlab.ece.cornell.edu/projects/ActiveLearningFor3D/

(a) Random interactions (b) Exhaustive examination (c) Active-Learning 

Figure 7: The three different user experiments conducted to evaluate the
proposed algorithm (Section 4.4). (Best viewed in color).

5. Conclusions
We propose an active-learning algorithm for piecewise

planar 3D reconstruction built on an energy minimization
framework with a novel adaptive coplanar classifier that
models the smoothness. The algorithm tries to reconstruct
the scene automatically, quantifies uncertainty, and queries
the user to provide support for the most uncertain regions
via simple and intuitive interactions (coplanar, not-coplanar,
and not-connected scribbles). The algorithm incorporates
this support information and also updates the coplanar clas-
sifier model to obtain better reconstructions, thus closing
the loop on the active-learning algorithm. We show through
a user study and machine experiments that the proposed al-
gorithm not only improves the reconstruction, but does so
in significantly lower time than exhaustive examination.

We believe that this idea of active-learning for 3D recon-
struction has a lot of potential beyond piecewise planar re-
constructions. The framework of guiding the user to provide
feedback to obtain better reconstructions can, not only be
extended to multi-view stereo approaches (in which, other
forms of interactions can aid dense surface reconstruction),
but can also be used with works trying to obtain a 3D recon-
struction from a single image, which has an inherent learn-
ing framework. Thus, the active-learning framework incor-
porates the positive aspects of both the automatic as well as
the interactive algorithms, using the user inputs when and
where needed, to render improved reconstructions.
Acknowledgments: The authors thank Anandram Sundar
for the data annotation.
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