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Abstract. We present an automatic approach to segment an object in calibrated
images acquired from multiple viewpoints. Our system starts with a new piece-
wise planar layer-based stereo algorithm that estimates a dense depth map that
consists of a set of 3D planar surfaces. The algorithm is formulated using an en-
ergy minimization framework that combines stereo and appearance cues, where
for each surface, an appearance model is learnt using an unsupervised approach.
By treating the planar surfaces as structural elements of the scene and reasoning
about their visibility in multiple views, we segment the object in each image in-
dependently. Finally, these segmentations are refined by probabilistically fusing
information across multiple views. We demonstrate that our approach can seg-
ment challenging objects with complex shapes and topologies, which may have
thin structures and non-Lambertian surfaces. It can also handle scenarios where
the object and background color distributions overlap significantly.
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1 Introduction

In this paper, we address the task of segmenting a rigid object in multiple images where
it has been photographed from multiple viewpoints. This task has a number of appli-
cations in image editing [25], image-based 3D modeling [8, 19, 35] and object instance
recognition [34]. Single-image foreground extraction [6, 25] is a well-studied problem
and has inspired several methods for multi-view segmentation [8, 19, 30], but most of
these approaches rely on some degree of user interaction and supervision to obtain ac-
curate results.

Our objective of automatically segmenting a rigid object in multiple images is re-
lated to the general image cosegmentation task, where the goal is to extract the region
common to an image pair [26] or in multiple images [2, 18, 22]. Although several auto-
matic approaches address the general case, they assume that the common regions appear
similar across images whereas the background differ significantly in appearance. A re-
cent approach [32] incorporates a preference for regions resembling objects. However,
none of these cosegmentation approaches exploit the rich multi-view constraints satis-
fied by rigid objects and static scenes.
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(a) (b) (c) (d)
Fig. 1: Our approach automatically segments objects in multiple images using the piecewise
planar stereo algorithm proposed in the paper and applying multi-view reasoning on the 3D planar
segments. (a) One of the 9 images of the COUCH sequence. (b) The segmented object. (c) The 3D
plane labeling and (d) its corresponding piecewise planar depth map.

Existing methods for multi-view segmentation from calibrated images that can han-
dle complex objects and scenes are almost all interactive [19,30,35]. The few automatic
approaches either rely on the object and background appearances (color distributions)
being very different [8, 20] or require the camera to be fixated on the object [8, 9].
Some of these approaches also implicitly estimate a globally consistent 3D reconstruc-
tion from the multiple viewpoints. However, reliably extracting 3D models for objects
remains a challenging problem since existing methods cannot robustly handle objects
with textureless or non-Lambertian surfaces or containing thin structures and holes,
which gives rise to complex occlusions. The ambiguity arising from similar object and
background colors poses another challenge for unsupervised methods that learn color
models in order to distinguish between the object and its background.

In this paper, we present an automatic approach for multi-view object cosegmenta-
tion that addresses some of these challenges. Our system takes as input an unordered
set of images captured around an object of interest, which is assumed to be fully visi-
ble in every image. The cameras are calibrated using a standard structure from motion
(Sfm) approach [7, 29]. To automatically cosegment an object, we must address two
challenges: (1) we need to reliably infer what constitutes the object and (2) we must
accurately recover its contour or silhouettes in all the images.

Our approach has three stages. First, a piecewise planar, layer-based depth map is
estimated for each image using a new approach that combines stereo matching with
appearance cues based on color models. These depth maps consist of a set of 3D planes
and a labeling of each pixel to one of these planes. An appearance model based on
Gaussian mixture models (GMM) of color distributions is learnt for each surface in
an unsupervised setting and used to recover more accurate depth maps. As shown in
Figs 1(c) and (d), depth discontinuities can be accurately captured in this representation
even though the depth estimates could be approximate. Next, we infer which of these
planar surfaces constitutes the object using both appearance and depth cues as well as
by analyzing their visibility in multiple views. Classifying these surfaces into object and
background induces an initial segmentation in each image. Finally, in the third stage,
these segmentations are probabilistically fused across multiple views to generate the
final segmentations.
Contributions. We propose an automatic approach for object co-segmentation that ex-
ploits appearance and stereo correspondence cues. It uses a new piecewise planar depth
map representation, which removes the need for estimating a globally consistent 3D
reconstruction for the segmentation task and is robust to scenarios where stereo match-
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ing can be unreliable. In contrast to existing unsupervised approaches that learn global
color models for the object and background, our approach learns compact, per-surface
appearance models from stereo correspondence cues and we show that this makes it
possible to accurately recover depth discontinuities even in the presence of complex
occlusions. We also show that the grouping of pixels into planes induced by our piece-
wise planar representation makes it easier to discern the object from the background
when reasoning about them in multiple views.

1.1 Related Work

Several interactive approaches for multi-view object segmentation have been proposed
[19, 30, 35]. They extend appearance based single-image segmentation approaches [6,
25] to multiple views but require user input to train the appearance models for the
object and background. Similar approaches have been proposed for interactive video
segmentation [1]. In the joint image segmentation formulation [23, 35], given a quasi
dense 3D reconstruction, image pixels and 3D points can be jointly segmented into
groups that constitute objects or object parts. The field of view cue was used in [27, 34]
to automatically segment 3D point clouds reconstructed using Sfm but neither of these
two approaches address the extraction of a pixel-level segmentation in the images.

A recent line of work has explored surface-based representations in stereo match-
ing [3–5, 13, 15, 28]. While 3D planes are the most common choice [3, 5, 13, 15, 28],
representations such as B-splines [4] have also been used. Amongst these approaches,
appearance cues were exploited in [5, 15] although the former uses a supervised ap-
proach to classify pixels into planar and non-planar regions. Our new piecewise planar
approach is closely related to [5] and has some similarities with prior work on bilayer
segmentation in binocular video [11]. To the best of our knowledge, however, surface
or layer-based representations have not been used in prior work on multi-view object
co-segmentation. Many stereo matching approaches use low-level color-based overseg-
mentation of the image either as hard constraints [31] or soft constraints [4]. However,
these low-level color cues cannot be used directly to reason at a higher level about
objects, surfaces or their appearance models.

An existing automatic approach for multi-view segmentation [8] assumes that the
cameras fixate on object and uses the pixels around the fixation point in each image to
learn the object’s color model. This as well as another related approach [20], simulta-
neously compute a visual hull of the object. These methods work best when the object
and background color distributions do not overlap, in which case having a global color
model for the object and background may be sufficient.

Our work is related to recent work by Campbell et. al. [9], where sparse stereo corre-
spondences are used to simultaneously segment the object in multiple images. However,
their approach relies on the fixation condition [8,20] to bootstrap the color model of the
object and requires reliable stereo correspondences for good results. The fixation con-
dition in all these approaches makes them inconvenient when segmenting objects with
complex shapes or topologies. In comparison, our approach only requires the object to
be visible in all the images. An important distinction in our approach is that appearance
(color) models are learnt for a set of surfaces (3D planes) in the scene. These color
models are more compact and provide better discriminability in comparison to global
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models. Unlike [8,9,20], where a joint pixel-level segmentation is directly computed in
multiple images, we first estimate dense surface-based depth maps, then infer which of
the underlying surfaces constitutes the object and finally compute a refined pixel-level
segmentation. This multi-staged approach provides robustness in ambiguous situations
where the object and background color distributions overlap significantly.

2 Overview

We use feature matching and structure from motion [7,29] (Sfm) to recover the camera
calibration and then perform asymmetric stereo matching on image triplets using semi-
global matching [17] with normalized cross correlation (NCC) as the matching cost1.
A heuristic was used to select neighboring cameras for each reference view 2. Fig 2(a)
shows an example of a depth map recovered by this approach. A per-pixel confidence
estimate that indicates the reliability of the associated depth estimates, is obtained by
inspecting the ratio of the matching costs of the best and the second best hypotheses in
the cost volume.

In our approach, we first estimate a dense, piecewise planar depth map by combin-
ing stereo cues with color-based appearance cues. We describe this in Section 3. We
then segment the object independently in each image by inferring which of the planar
segments in the estimated depth map belong to the object. Section 4 describes how this
is done using a combination of appearance and depth cues along with multi-view rea-
soning. Section 5 describes how the final segmentations are computed after fusing the
initial segmentations across multiple views.

Although our representation is similar to [5], unlike their energy that is optimized
via fusion moves [21] computed using QPBO-F, our energy function is amenable to
efficient optimization via α-expansion [6] and has fewer tuning parameters. More over
the symmetric binocular formulation proposed in [5] is difficult to extend to more than
two views. In our approach, we perform stereo matching first and refine the noisy depth
map by subsequently incorporating monocular appearance cues. This two-staged ap-
proach lets us easily incorporate confidence associated with the depth estimates com-
puted from multiple views into the optimization. This also provides greater robustness
when the appearance model parameters are learnt. However, we avoid the additional
complexity of a plane+parallax representation [5], as our focus is on recovering precise
depth discontinuities which are more important for accurate segmentation.

3 Piecewise planar stereo revisited

Let p ∈ P denote the pixels in an image and let D = {dp} and C = {cp} where cp ∈
(0, 1), denote the corresponding depth and confidence maps respectively. Let Π = {πi}
denote the set of planes hypothesized from the depth map D. In this section, we first
describe how these planes are computed. We then describe an energy-based formulation

1 We use a plane-sweep stereo framework and match the warped neighboring views to the ref-
erence image to construct the cost volume.

2 cameras having many 2D features in common with the reference view and which form a suit-
able baseline with respect to it are preferred
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(a) (b)

Fig. 2: (a) A noisy depth maps for one of the COUCH images computed using [17]. (b) A partial
labeling of pixels to hypothesized 3D planes is visualized, where the pseudo-colors represent the
pixels associated with a particular plane. Black pixels do not have a plane label.

to estimate a dense pixel-to-plane labelingL, where each pixel p is given a label lp ∈ Π .
Each plane πi is parameterized by a 3D plane equation, a 2D extent in the image, and
an appearance model, whose parameters we denote by Ai.

3.1 Plane hypotheses generation

We generate multiple plane hypotheses from a semi-dense depth map using a seed and
grow approach. In our experience, this approach works better for arbitrary non-planar
scenes compared to a sequential RANSAC-based approach [15] that can accurately
estimate only dominant scene planes. Unlike [28] our planes also have an appearance
model whose parameters are learnt in an unsupervised manner. Our approach is based
on K-means clustering and is similar to existing work on mesh simplification [10]. We
first compute a set of locally planar patches or surfels {sp} from 3D points in the depth
map and then robustly cluster them on the basis of coplanarity.

At a pixel p, a surfel sp is computed from the 3D points corresponding to pixels
within a 7 × 7 patch around p in the depth map D. This step uses a standard least
squares plane fitting approach as described in [33]. A surfel is computed when the
patch contains enough confident depth estimates (we require at least 10 samples with
confidence cp > 0.1). Reliable surfels are retained after checking the quality of the
plane fit and pruning unstable and degenerate surfels.

The set of plane hypotheses {πi} are then computed by minimizing the total ap-
proximation error given by the objective

∑
p

∑
i

f(sp, πi), where the function,

f(sp, π) =

∣∣∣∣ 1dp − 1

dπ

∣∣∣∣ /( 1

dp

)
= |dp − dπ|/dπ (1)

measures the error incurred by assigning surfel sp to plane π. Here, dp and dπ denote
the depth at pixel p corresponding to sp and the depth of the 3D point, where the ray
back projected from p intersects the plane π.

We construct a graph where the nodes represent pixels with valid surfels and edges
are present between nodes within w pixels of each other in the image (we use w=5). An
iterative seed and grow clustering is now performed on this graph using the approach
described in [10]. On convergence, the planes corresponding to the M largest clusters
with at least m pixels in each cluster are selected as the final set of plane hypotheses.
Here, we set M=50 and m=20. We find the bounding box of the clustered pixels and
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expand it by a factor of two to obtain an initial estimate of the 2D image extent of each
plane. Note that this clustering induces a noisy and partial labeling of pixels to planes
in the image, an example of which is shown in Fig 2(b).

3.2 Formulation

Given the set of hypothesized planes, we formulate the estimation of the piecewise
planar depth map as a multi-label MRF optimization problem, which we solve approxi-
mately using iterative energy minimization. At each iteration, we obtain an approxima-
tion to the Maximum a Posteriori (MAP) labeling of pixels to the set of planes using
α-expansion [6], after which the parameters used to compute the appearance terms in
the energy function are re-estimated. The pairwise MRF is defined on a graph with the
set of pixels P as nodes and all pairs of adjacent pixels on a 4-connected grid denoted
by N as edges. We compute the labeling L that minimizes the following energy.

E(L) =
∑
p∈P

EAp (lp) + λG
∑
p∈P

cpE
G
p (lp) + λS

∑
(p,q)∈N

Epq (lp, lq) (2)

The unary terms EGp (lp) and EAp (lp) measure the penalty of assigning pixel p to plane
lp based on a geometric and appearance cost respectively. The pairwise termEpq(lp, lq)
measures the penalty of assigning pixels p and q to planes lp and lq respectively, and
λS is a regularization parameter.

Geometric unary term (EG) This term measures the geometric cost of assigning a
pixel with a given raw depth estimate to a particular plane. It is computed as shown
in Equation 1. The effect of this unary term is modulated using a per-pixel weight
cp ∈ (0, 1), which is the confidence in the depth estimate dp at pixel p and a global
parameter λG that scales the geometric term relative to the appearance term.

Appearance-based unary term (EA) This term measures the cost of assigning pixel
p to a plane based on the pixel’s color. Each plane πl has an appearance model imple-
mented as a Gaussian Mixture Model (GMM) of colors (in Lab space) with K mixture
components. The corresponding GMM parameters are denoted by Al. The k-th GMM
component is a Gaussian distribution with mean µlk and covariance Σl

k and has a weight
wlk. Given the pixel’s color x, the appearance cost for assigning it to a plane l is defined
as the negative log likelihood, EAp (l) = −log(p(x|Al)) where,

p(x|Al) = p(x|{µlk,Σl
k, w

k
l }) =

K∑
k=1

wk N (x|µlk,Σl
k) (3)

and N (x|µ,Σ) denotes the probability density function of a Gaussian distribution
with mean µ and covariance Σ.

Pairwise term (Epq). The pairwise term is modeled using a contrast sensitive Potts
model making the energy function regular. We segment the image into small superpix-
els using the GeoS algorithm [12] where the superpixels are no larger than 10 × 10
pixels but are typically much smaller. Although our MRF is defined on a regular grid,
we use this superpixel segmentation as a soft constraint to guide the label boundaries
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(a) (b) (c)

Fig. 3: (a) One of the initial depth maps from the BICYCLE sequence computed using [17].
(b) The piecewise planar depth map obtained when only geometric cues are used. This is similar
to [28]. (c) The depth map computed by our approach. Using appearance cues, both thin structures
and complex occlusion boundaries are accurately recovered.

towards high contrast image edges. We quantize the image by assigning to each pixel
p, the mean color xsp in its superpixel and define the pairwise term for pixels p and q as
Epq(lp, lq) = β0 + β1 exp

(
−γ|xsp − xsq|2

)
where lp 6= lq

3.

Learning the Parameters. In the first iteration, we minimize the energy defined in
Equation 2 without the appearance-based unary terms by setting λG to 0. In subsequent
iterations, λG is set to 100 and the appearance term is evaluated using GMM param-
eters learnt from the labeling obtained from the previous iteration. To learn the GMM
parameters for a plane, we consider the pixels assigned to it in the current labeling and
consider the distribution of confidence for these pixels. The t-th percentile of this dis-
tribution is used to threshold and select confident pixels for training the GMMs. We
set t to 50. The GMM parameters are estimated using the EM algorithm after model
selection is used to determine the optimal number of mixture components. We allow a
maximum of ten components and use the MDL (Rissanen) criterion [24] to select the
value of K that maximizes the regularized posterior of all the nl pixels used to train the
GMMs 4.

Unlike interactive segmentation [19,25,30] where training data is user-provided and
almost always reliable, the parameter learning step in our algorithm needs to be robust
to noisy training samples, which arise due to errors in stereo matching. Usually, pixels
with inaccurate depths have low confidence when compared to accurate depth pixels.
However there are exceptions – the confidence could be relatively high at specular sur-
faces, or at occlusion boundaries with textureless occluded surfaces, even though these
pixels may have inaccurate depth estimates. Pixels on weakly textured surfaces, on the
other hand, have low confidence even though their depth may be accurate [17].

We also use the confidence cp to weight the geometric term in the energy func-
tion 2. This makes our approach robust to errors in stereo matching, which occur in
cases just described. As confidence estimates are usually low at textureless regions and
depth discontinuities, in both these cases the appearance term dominates the geometric
term. This enforces smoothness in homogeneous regions but also allows intricate oc-
clusion boundaries to be recovered. Fig 3 shows an accurate depth map recovered for a
challenging object with thin structures and holes.

3 Here, β0 = 1.0, β1 = 50.0, γ = 0.01 and x ∈ (0, 255).
4 MDL criterion:

(
−log(p(x|Al)) +

dim
2
log(nl)

)
, here dim = 3
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4 Surface segmentation

Given a labeling L of pixels to planes, we now show how to infer which of the planar
segments belong to the object. We compute a binary labeling Fr over regions in L,
using labels 0 and 1 for background and object respectively. We first reparameterize the
labeling L to obtain a new labeling L′ where each connected 2D segment has a unique
label. These regions are denoted as R = {ri}. We analyze all pairs of segments (ri, rj)
and link them if their corresponding polygon in 3D are coplanar and satisfy a necessary
visibility condition. To do this, we sort the pairs in decreasing order of the degree of
coplanarity of their corresponding polygons and test them in a greedy fashion until all
pairs within a threshold have been considered.

The visibility condition is as follows – by linking two coplanar polygons in 3D,
a larger polygon is implicitly generated. If any part of this polygon occludes a planar
segment in the original depth map, it violates visibility and the regions are not linked.
However, if the polygon is completely occluded by other segments, the regions can be
linked. We implement this visibility check using an approach similar to [5], where it
was used to infer 3D connectivity of disconnected 2D segments. Linking disconnected
coplanar regions lets us reason about them based on the visibility of their common 3D
plane in the multiple calibrated images. Finally, we have a new pixel to region labeling
L′ and a many-to-one mapping from regions in L′ to a recomputed set of planes.

We now compute the region labeling Fr using energy minimization on two similar
binary pairwise MRFs defined on a graph over the regions r ∈ R with edges connecting
adjacent regions denoted as NR. We compute labelings F ar and F gr by minimizing the
two energy functions. 5

E(F ar ) =
∑
r∈R

EOr (fr) +
∑

(r,t)∈NR

Eart(fr, ft) (4)

E(F gr ) =
∑
r∈R

EOr (fr) +
∑

(r,t)∈NR

Egrt(fr, ft) (5)

The unary term EOr (fr) in both energy functions are identical. However, the pairwise
terms Eart (fr, ft) and Egrt (fr, ft) both of which favor label agreement, are different
and based on the compatibility of regions in terms of appearance and depth respectively.
These energy functions can be efficiently minimized using an s-t mincut algorithm. In
general, the two solutions F ar and F gr could be different. In the final segmentation Fr,
a region is labeled as object if it is labeled object in either of the solutions. Otherwise it
is labeled as background.

Multiview objectness unary term (EO). Using the camera calibration and piecewise
planar depth induced by L′, we warp image pixels into the other views. If a pixel
projects within every other image, we say that it has high objectness. Since the ob-
ject is assumed to be visible in every image, pixels with low objectness are likely to be
background. Pixels with high objectness could either be object pixels or lie on back-
ground surfaces that are within the field of view of every camera. Thus we measure the

5 Later in this section, we explain why we choose two energy functions instead of a single unified
one.
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objectness of a region r as the fraction of its pixels φr that have high objectness. The
term is defined as EOr (0) = (1 + exp(−(φr − µ0)/σ0))

−1 and EOr (1) = 1 − EOr (0)
where µ0 = 0.9, σ0 = 0.02. We force a region to take the foreground or background
label if φr > 0.99 or φr < .8 respectively, using hard constraints.

Appearance-based compatibility term (Eart). This term measures the dissimilarity of
the color histograms of regions r and t. For this, we compute the KL-divergence be-
tween their GMMs denoted as ρrt = DKL(Ar||At), where Ar and At are the GMM
parameters, using the method proposed in [16]. The term is defined as Eart(fr, ft) =
η1 exp(−µ1 min(ρrt, ρtr)) when fr 6= ft. When two dissimilar regions take different
labels, there is a lower penalty than when the two regions are similar.

Depth-based compatibility term (Egrt). This term measures for two adjacent regions
in L′, how close their corresponding polygons are in 3D by computing the mean relative
depth discontinuity for pixels along the label boundary. Thus, for regions r and t, we
find a set B of pairs of adjacent pixels (pi, qi) that lie across the corresponding region
boundaries in L′. Denoting the depth of pixel p as dp, we define term as Egrt(fr, ft) =
η2 exp(−µ2∆rt) where,

∆rt =
1

|B|

|B|∑
i=1

|dpi − dqi |/min(dpi , dqi)

We set parameters, η1 = 5.0, µ1 = 0.1, η2 = 5.0 and µ2 = 10.0.

Discussion. An alternative to our approach would have been to include both the pair-
wise terms in a single energy function. However, this would require setting appropriate
weights for the two terms, which is difficult in general. Occasionally, when the object
is camouflaged against the background, the appearance cue can be less reliable than the
depth cue, whereas when the depths along the region boundaries are approximate, the
depth cues can be less reliable. To avoid this interplay between the two pairwise terms
in ambiguous cases, we chose to solve two energy functions as described and combine
their results later. As the pairwise MRFs are small, there is negligible overhead in do-
ing this. In practice, we often find the two segmentation F ar and F gr to be identical. In
general, our approach has a slight bias towards over-segmenting the object, but this is
robustly handled in the final stage of our algorithm, described below.

5 Multi-view segmentation

The final stage in our approach exploits multi-view constraints to refine all the segmen-
tations, which is similar to enforcing silhouette consistency in multiple views [9, 20].
The binary labeling {Fr} of regions computed in the previous stage, induces a binary
segmentations of pixels. We denote this initial labeling as F i and the final labeling as F
and use a subscript j to indicate the j-th image in the sequence of N images, whenever
necessary. To compute F , we perform energy minimization on a pairwise binary MRF
defined on a 4-connected pixel grid (similar to the first stage of the algorithm described
in Section 3). Here we minimize the following energy function,

E(F ) =
∑
p∈P

EOp (fp) +
∑
p∈P

EAp (fp) +
∑

(p,q)∈N

Epq(fp, fq) (6)
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The unary terms EOp (fp) and EAp (fp) measure the cost of assigning pixel p to label
fp ∈ {0, 1} and the pairwise term Epq(lp, lq) penalizes label disagreement and has the
same definition as the pairwise term in Equation 2. We use the s-t mincut algorithm to
exactly minimize the energy function.

Multi-view Objectness unary term (EO). This term measures the objectness of a
pixel, a term that was defined in Section 4. Unlike earlier, where the whole image was
considered to conservatively estimate a pixel’s objectness, we now use the available
segmentations {F i}. For robustness, we compute a confidence-weighted estimate in
two passes, where the first pass computes a per-pixel weight reflecting the confidence
in the pixel’s objectness. For each foreground pixel p in F ik, we warp it into every other
image using the depth estimate computed in the first stage, and compute a fractionwp ∈
[0, 1], indicating how often the warped pixels lies in the foreground in all the images.
This is done by using the semi-dense depthmap recovered in Section 3.1, projecting the
3D point onto all the views and computing the fraction of the views in which the point
lies within the foreground. For background pixels p in F ik, we set wp = 0.

In the second pass, we warp every pixel p in the j-th image into every other image
and set its objectness zp to the mean of the set of numbers {wq}, where q denotes the
warped pixel in the j-th image and wq its confidence computed in the first pass. We de-
fine yp = (1+exp(−(zp − µ1)/σ1))

−1 where µ1 = 0.25, σ1 = 0.1. and define the unary
term for the pixel in terms of yp for the binary labels as follows: EOp (1) = − log yp,
and EOp (0) = − log(1− yp).

Appearance unary term (EA). We threshold the objectness estimates to select pix-
els that we are confident about being in the set of foreground and background pix-
els respectively 6. Appearance models based on GMMs of colors are now trained for
the foreground and background set, using model selection to determine the appropriate
number of mixture components. The implementation details are similar to the first stage
(Section 3.2). The penalty EAp is set to the negative log likelihood under the foreground
and background appearance models (see Equation 3 for details). Fig 4 shows an exam-
ple demonstrating the advantages of multi-view reasoning in our method. We draw the
reader’s attention to the two rear carriage wheels in this example, which get accurately
segmented during the final stage.

6 Results

Datasets. We tested our algorithm on eight datasets and perform ground-truth evalua-
tion for six datasets, which are summarized in Table 1. These datasets pose several chal-
lenges for existing approaches as the object and background color distributions overlap
significantly in many cases. Also in some images, the object contours are very faint due
to low image contrast. Illumination changes across images, diffused inter-reflections
between object and backgrounds in many cases weakens the discriminability of the ap-
pearance cues. The objects in these sequences contain thin structures and have complex

6 Concretely, we select pixels with yp > 0.7 and yp < 0.3 to serve as the selected foreground
and background pixels.
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(a) (b) (c) (d)

Fig. 4: (a) One of the images in the CARRIAGE sequence. (b) The corresponding multi-view
objectness measure. Foreground segmentations (c) before and (d) after the final multi-view con-
sensus step. Notice how the the initial coarse segmentations are refined and the missing wheel
and gaps between the wheels are recovered. In our formulation, the stone next to the rear carriage
wheel gets segmented as part of the object.

topologies. The presence of textureless surfaces, strong specularities and reflections in
some cases poses additional challenges for an automatic segmentation approach.

Evaluation. To evaluate our method, we used Grabcut [25] to segment the objects
in every image and treated these results as ground truth. Obtaining the ground truth in-
teractively using Grabcut [25] on our sequences was an extremely tedious process. For
instance, accurately segmenting the car, where glass windows reflect the background,
the carriage and bicycle wheels where the background is seen through holes in the ob-
ject, took up to 3 minutes on a single image and multiple user interactions. We evaluated
our method using the popular intersection over union metric [20], which is computed
as the ratio of the size of the set intersection to that of the set union of the computed and
ground truth segmentation. The accuracy of our method across all datasets on average
was 99.1 ± 0.8%. To evaluate the accuracy more strictly, we mark boundaries in the
segmentation and compute the unsigned distance transform with respect to these. This
distance map is thresholded to obtain a band of pixels around the boundary over which
the accuracy is recomputed. Table 1 shows the accuracy for various thresholds. With
a threshold of 10 pixels, the average accuracy of our method was 90.9 ± 5.6%. Fig 5
shows a few examples of segmentations and corresponding depth maps recovered by
our method. More detailed results are presented on our website 7.

Comparisons. Fig 6 reports a quantitative comparison of our method with a state
of the art unsupervised cosegmentation approach [32]. Our method is consistently more
accurate on all four sequences used in the comparison. The assumption in [32], that the
background appearance changes across images more quickly than the foreground ap-
pearance often causes the background to be misclassified as foreground on many of our
examples. Our method is also significantly more flexible than existing automatic multi-
view segmentation methods [8, 9] which rely on the fixation condition to learn the ob-
ject’s appearance model. However, this may be difficult or even impossible for objects
with complex topologies such as the BICYCLE as the background is consistently seen
through the object. In other cases, where the foreground contains multicolored objects
such as in the CHAIR1 sequence, a single fixation point is unlikely to provide sufficient
representative samples for learning a color model for the complete foreground object.
In comparison, our approach makes no assumptions about the shape or appearance of
the object of interest.

7 http://chenlab.ece.cornell.edu/projects/MultiviewObjectCoseg
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Fig. 5: [ COLUMNS 1 – 5] Results on CHAIR1, CHAIR2, BICYCLE, BIKE and CAR sequences
respectively. [Row 1-3] A sample image from each dataset is shown along with its piecewise-
planar surface labeling and the corresponding depth-map computed by our method. [Row 4] The
final segmentations recovered by our method. Notice how thin structures and holes in objects
with complex topologies are accurately segmented (see columns 1–3). Our method accurately
deals with camouflage where the object and background colors are similar (see columns 4 and 5),
and is also robust to the presence of strong specularities and reflections (see column 5).

Name #Images Acc-2 Acc-5 Acc-10 Acc-Full

COUCH 9 87.5± 2.0 93.9± 1.2 96.4± 0.7 99.6± 0.1

TEDDY 15 69.0± 4.9 79.5± 5.3 86.9± 3.8 98.8± 0.4

BIKE 34 83.8± 3.8 89.8± 4.1 92.7± 3.9 99.4± 0.4

CHAIR1 17 88.0± 4.6 91.4± 3.9 93.9± 3.1 99.2± 0.4

CHAIR2 45 90.5± 1.7 94.0± 0.8 95.8± 0.6 99.5± 0.1

CAR 45 74.8± 3.3 80.8± 2.9 84.2± 2.9 98.0± 0.7

Table 1: The percentage of correctly labeled pixels (mean±std. dev.) in the segmentations com-
puted by our method is listed for six datasets (see text for details).

Although our piecewise planar stereo method is closely related to [5], their method
cannot ensure that the foreground will be segmented as a single object. This makes it
difficult to compare the methods quantitatively. A C++ implementation of our approach
runs in under 2 minutes on a PC with an Intel 3GHz Xeon processor and 4GB RAM
on a single 640 × 480 resolution image. Approximately one minute is spent on the
piecewise planar depth map estimation step. In comparison, the method proposed in [5]
takes 20 mins. on a single Middlebury image pair.

7 Conclusions

In this work, we have proposed an unsupervised algorithm to obtain the joint multiview
foreground segmentation. We have developed a novel approach that combines multi-
view cues and appearance cues in a hierarchical reasoning framework to extract out the



Multiple View Object Cosegmentation using Appearance and Stereo Cues 13

Vicente’11 [32] Grabcut [25] Ours PMVS [14]

Name Vicente’11 [32] PMVS [14] Ours

BIKE
Acc-10 68.1± 6.7 61.0± 3.9 90.0± 4.9

Acc-Full 88.9± 6.3 96.0± 1.8 99.1± 0.7

BICYCLE
Acc-10 56.5± 3.1 56.2± 1.8 89.8± 3.8

Acc-Full 81.7± 8.9 89.1± 3.9 98.0± 0.5

CHAIR1
Acc-10 73.3± 4.8 72.7± 2.1 93.9± 3.1

Acc-Full 86.9± 7.8 96.6± 0.4 99.2± 0.4

CAR
Acc-10 74.4± 5.3 59.6± 4.3 83.2± 1.1

Acc-Full 91.8± 4.3 91.2± 5.5 97.9± 0.6

Fig. 6: COMPARISONS: Two out of 61 images from the BICYCLE sequence are shown. [Column
1] shows results from Vicente et. al. [32] in the red overlay. [Column 2] shows results from Grab-
cut [25] with exhaustive user input. [Column 3] shows our results. [Column 4] shows results
generated from a 3D reconstuction (PMVS [14]) with manual segmentation. Our segmentations
are accurate on thin structures such as the handle-bars and wheel rims and visually comparable
to Grabcut [25] on this example. The interactive segmentation took 4 minutes during which the
user had to provide about 80 strokes to obtain a perfect result. [BOTTOMLEFT] The foreground
and background strokes drawn by the user are shown in blue and yellow respectively. [BOTTOM-
RIGHT] Quantitative accuracy of our results compared to [14, 32].

foreground object across the multiple views. As we show via quantitative and qualita-
tive results, our algorithm accurately handles a wide variety of objects that pose chal-
lenges due to specular surfaces, diverse and overlapping color distributions, complex
occlusions, and thin structures.
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