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ABSTRACT 

 

A lot of applications in the domain of computer vision 

require recovering structure and motion from a set of 2D 

images. In order to ease this process, an ongoing effort is 

to create a structure from motion (SFM) library
1
. This 

library would package together, feature extraction and 

tracking algorithms like SIFT and KLT; structure from 

motion modules like factorization and bundle adjustment, 

thereby allowing any application to suitably use them. A 

useful addition to this library is visual simultaneous 

localization and mapping. Visual SLAM, allows one to 

simultaneously obtain a map of an unknown environment 

and locate an uncontrolled monocular camera within the 

environment. The aim of this effort is to integrate this 

visual SLAM algorithm into the SFM library. 
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1. INTRODUCTION 

 

There are a lot of ongoing efforts in the domain of SLAM 

and real-time monocular SLAM in particular. Some 

significant contributions in this domain are by Davison et 

al. [1]. Our efforts involved understanding the current 

state of the technology and to suitably incorporate it in the 

library.  

 

The report has been structured to first give an overview of 

the basic simultaneous localization and mapping 

methodology in Section 2. Monocular SLAM which is 

based on the basic SLAM methodology is then explained 

followed by a more efficient, unified inverse depth 

parameterization model for MonoSLAM. This is followed 

by a summary of experiments and results in Section 3 and 

Conclusions. 

 

                                                 
1
 SFM library is an ongoing project in the Advanced 

Multimedia Processing(AMP) lab at Carnegie Mellon University  

 

2. OVERVIEW OF CONCEPTS 

 

2.1. Simultaneous Localization and Mapping (SLAM) 

 

Let us consider the classic case of a robot placed in a 

known environment. In this case, a map of landmark 

locations within the environment is known a priori. The 

robot can thus proceed to take measurements of the known 

landmark locations, and use these measurements to 

determine its own location within the environment. This is 

known as the localization problem. A counter case would 

be one wherein the motion of the robot within the 

environment is known a priori. The robot could then take 

measurements of the environment and build up a map of 

the environment from these measurements. This is known 

as the mapping problem [2]. 

 

SLAM aims to solve the localization and mapping 

problems together, i.e. we could place a robot in an 

unknown location in an unknown environment and have 

the robot incrementally build a map of this environment 

while simultaneously using this map to compute its own 

location. This is achieved by application of a landmark 

extraction algorithm and a Kalman filter loop. 

 

A significant part of SLAM is the ability of the robot to 

recognize and initialize key features from the environment 

[3]. These features should satisfy certain important 

conditions: they should be stationary, easily re-observable, 

and easily distinguishable from each other. A feature 

extraction algorithm such as Harris corner detection or the 

Shi & Tomasi algorithm is used to locate features in the 

environment which satisfy these conditions.  

 

The heart of the SLAM process lies in the Kalman filter 

loop, which maintains the position and uncertainty of the 

robot and the landmarks at any given time The estimated 

position of the robot as well as the estimated positions of 

the landmarks is put together into a state vector, and in 

parallel, a covariance matrix representing the ambiguity or 

uncertainty of each of these positions is also maintained. 

The Kalman filter works in three distinct steps: predict, 
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measure and update. In the prediction stage, the state 

vector and covariance matrix for the next time instant are 

predicted using the current state and the motion model. In 

the measurement stage, the actual measurement of range 

and bearing is made; usually using an on-board device like 

an odometer. In the update stage, based on the error 

between the prediction and the measurement, the state 

vector and the covariance matrix are updated using the 

kalman gain [4].  

 

In addition to the uncertainty in the position of the robot 

and feature points, the covariance matrix also represents 

the covariance between the feature points. Due to the 

nature of the kalman loop, the error and thus the kalman 

gain reflects on the entire covariance matrix. Thus, the 

uncertainty of the system about the locations of each 

feature point keep decreasing as the system observes more 

of the environment. 

 

2.2. Monocular SLAM 

 

A successful application of the SLAM methodology has 

been introduced by Davison et al. [1] where a real-time 

algorithm which can recover the 3D trajectory of a 

monocular camera has been described.    

 

The key in this application is modeling the uncontrolled 

motion of the camera. As this is a freely moving camera, a 

linear motion model would not work. In order to account 

for this, a constant velocity, constant angular velocity 

model is assumed. This imposes some smoothness into the 

motion and assumes that large abrupt accelerations are 

unlikely. In order to account for this non-linear motion 

model, the extended kalman filter (EKF) takes the place of 

the kalman loop. EKF functions along the same lines as 

the kalman filter with the non-linear motion model being 

the only difference. 

 

The state of the system as explained before is described by 

the state vector and covariance matrix. The state vector in 

this case however has to describe the state of the camera in 

3D and the positions of the feature points.  The state of the 

camera contains 13 parameters – 3 parameters describing 

the position of the camera, 4 parameters representing the 

quaternion describing the orientation of the camera and 6 

parameters describing the linear velocity vector and 

angular velocity vector. The feature points are defined by 

their 3D locations with respect to the world. The whole 

system is described as a probabilistic 3D map modeled by 

a multi-variate gaussian with the mean as the state vector 

and variance as the covariance matrix. The state vector 

and covariance matrix are maintained over the whole 

motion of the camera as the main intent of the application 

is closed loop mapping, i.e. being able to recognize a 

feature which was initialized a long time back. 

MonoSLAM is derived from the SLAM methodology and 

thus works along the same lines. The feature initialization 

however, is different. The drawback of this approach is 

that it requires a template at the system initialization step 

to describe the scale of measurement and initialize the 

EKF process. When the system is short of a minimum 

number of feature points it decides to initialize new 

features. The features points are detected using Shi and 

Tomasi’s feature detection algorithm. The features at this 

stage are however only partially initialized and thus are 

not added to the EKF map. At this stage, the system has an 

estimate of the epipolar line along which the feature lies, 

with low uncertainty but, does not have any information 

about the depth. An assumption made at this stage is to 

assume that the figure lies at a distance of 0.5m to 5m 

from the camera. Over the next few frames, depth 

hypotheses evenly distributed along the epipolar line from 

0.5m to 5m are tested to finally narrow down on a depth 

value which gives highest amount of correlation for that 

feature. The feature is then assumed to be fully initialized 

and becomes part of the EKF map. 

 

Once the feature is initialized, the rest of the process is 

standard EKF procedure. The prediction stage involves the 

prediction of the next state of the camera and feature 

points. The measurement stage involves performing a 

correlation search around the predicted region to find the 

actual position of the features. The update stage is 

updating the state vector and covariance matrix based on 

the error in prediction. 

 

2.3. Unified inverse depth parameterization 

 

A monocular camera measures the bearing of image 

features. As explained in the previous sections, to infer the 

depth of a feature the camera must observe it repeatedly as 

it translates through the scene, each time capturing a ray of 

light from the feature to its optic center. The angle 

between the captured rays is the feature's parallax – this is 

what allows its depth to be estimated. For instance, a star 

in the sky exhibits very low parallax even in the presence 

of significant motion due to its extreme depth. This 

parallax has been studied and modeled to obtain an 

estimate of the depth, using inverse depth parameterization 

[5]. 

 

A limitation of Davison’s MonoSLAM approach as 

highlighted by Montiel et al. [5] is that, it makes use of 

features which are close to the camera, which exhibit 

significant parallax and would therefore work in room-

scale scenes. Another limitation put forth, refers to the 

feature initialization required in Davison’s approach [1]. 

The delayed feature initialization which requires the 

feature to be visible for a few frames before it is 

considered as a fully initialized feature means that, 



observing these features would not help update the pose of 

the camera till it is fully initialized. 

 

The unified inverse depth parameterization overcomes 

these limitations by defining a way of representing a point 

at infinity. The idea is that, no observable feature is truly 

infinitely far from the camera. A point at infinity is simply 

far enough away relative to the camera motion since it has 

been observed that no parallax has been observed. This 

method requires no feature initialization, the features are 

added to the map right from the point it is first viewed and 

the standard EKF loop takes care of updating its position 

and the pose of the camera. 

 

The fundamental operation of the inverse depth algorithm 

is similar to other MonoSLAM implementations, in that, 

the standard EKF loop is used to converge to the location 

of the feature. The main difference however, is the 

representation of the feature points which allows for 

modeling points at extreme depth. 

 
Fig. 1: Feature parameterization and measurement equation 

 

The position of each new 3D feature i added to the map is 

parameterized by a six dimension state vector (Fig. 1). 

 

Yi = (xi, yi, zi, θi, φi, ρi)
T 

 

The state codes the ray for the first point observation as: 

(xi, yi, zi), the camera optical center where the 3D point 

was first observed; θi and φi, the azimuth and elevation for 

the ray directional vector m(θi, φi). The point depth along 

the ray di is coded by its inverse ρi = 1/di. In other words, 

every feature point is modeled as follows. 

 

 

Using the above representation, a point even at extreme 

depth can be modeled when the inverse depth ρi tends to 

zero.  

 
The working of this algorithm is very similar to Davison’s 

implementation. Consider the above representation as 

analogous to a fully initialized feature in the camera state 

vector. The inverse depth for the feature is initially set to a 

low value. The EKF process suitably corrects it to finally 

converge to an appropriate depth and position, as the 

feature is re-observed over the sequence of images. 

 

 2.4. Integration with the structure from motion 

library 

 

Simultaneous localization and mapping, MonoSLAM in 

particular, provides for a significant addition to our 

structure from motion library. MonoSLAM allows one to 

obtain the trajectory of a freely moving monocular camera. 

It allows for drift free performance which outperforms 

structure from motion (SFM). Integrating MonoSLAM 

with our SFM library would thus greatly benefit for certain 

applications. 

 

The integration of MonoSLAM with the rest of the library 

is achieved by using the SIFT feature trajectory obtained 

from the SFM library. The library returns the trajectory of 

all the SIFT features as its output. The features found in 

every frame can replace the feature initialization step in 

the MonoSLAM system. Further, the entire matching 

process which is a key step of the EKF loop, can be 

removed by using the SIFT feature trajectory. The results 

from this integration are described in the next section. 

 

3. EXPERIMENTS AND RESULTS 

 

3.1. Structure and motion viewer 

 

In order to obtain a good visualization of the camera 

trajectory and the 3D locations of the feature points, a 

Structure and motion (SAM) viewer, has been developed 

by Tzung-Han Lin
2
 from ITRI. 

 

The viewer accepts the intrinsic matrix of the camera; the 

extrinsic matrix which gives the position of the camera 

with respect to the world for every frame. The viewer also 

accepts the set of 3D feature point locations and the color 

of these feature points. Using these parameters the viewer 

gives a 3D scatter of the feature points along with the 

camera positions and trajectory. This viewer has been used 

in all our experiments. 

                                                 
2
 Tzung-Han Lin from Industrial technology and research institute 

(ITRI), Taiwan worked with the AMP lab at CMU and developed the 

SAM viewer 
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Fig.2: Image from the test video sequence; Fig.3: (a) Camera trajectory (where each camera position has been labeled in green) and 

feature point scatter as seen in the viewer. (b) Another view of the scatter for better 3D visualization. 

 

 

3.2. Inverse depth parameterization 

 

The motivation behind this is to study and understand the 

impact of inverse depth parameterization on an outdoor 

scene with feature points even at considerable depth. The 

experiments were carried out using a matlab code 

developed by Montiel et al. obtained from the SLAM 

summer school (2006) database [6]. The system was 

incomplete in a sense, as it lacked any form of feature 

extraction. The system required manual initialization of 

features. However, in order to complete the system, we 

would require some form of feature initialization in the 

system.  

 

The integration of the system with the SFM library was 

found to fill in this gap. As explained in the earlier section 

on the SFM library, the SIFT feature trajectory can be 

used to integrate the two systems together. The SIFT 

feature trajectories obtained from the library, gives the 

frames between which a particular feature is observed, 

along with the positions of these key-points in each frame. 

The SIFT feature trajectories were used to initialize new 

features in the system. The trajectory of these features, 

across the frames it is visible was used to replace the 

matching process of the EKF loop, thus integrating the two 

systems together.  

 

The matlab code-base was modified to accept any video 

sequence from the user. The output parameters of the 

system were then modified as required by the viewer. One 

of the images used in our experiment is shown in Fig. 2, 

the some snapshots of the output as seen in the viewer is 

shown in Fig. 3a and Fig. 3b.  (Note: In order to provide a 

better visualization of the object in view a specific set of 

feature points have been selected here) 

 
 

 

 

4. CONCLUSION 

 

The results from the experiments show that, the SIFT 

features obtained from the SFM library can be used with 

the EKF loop of a SLAM methodology to achieve efficient 

real time localization and mapping. The integration was 

done offline, by using the SIFT trajectories in the matlab 

code-base of monocular SLAM. Integrating the 

MonoSLAM codebase directly into the SFM library can 

result in a unified solution for simultaneously recovering 

the structure of the environment and the motion of the 

camera. The next phase of work would be a real-time 

implementation of the process described in the paper.  
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