
STRUCURE AND MOTION RECOVERY USING VISUAL SLAM

Adarsh Kowdle, Yao-Jen Chang, Tsuhan Chen

Department of Electrical and Computer Engineering

Carnegie Mellon University
akowdle@andrew.cmu.edu, kevinchang@cmu.edu, tsuhan@cmu.edu

ABSTRACT

A lot of applications in the domain of computer vision

require recovering structure and motion from a set of 2D

images. In order to ease this process, an ongoing effort is

to create a structure from motion (SFM) library
1
. This

library would package together, feature extraction and

tracking algorithms like SIFT and KLT; structure from

motion modules like factorization and bundle adjustment,

thereby allowing any application to suitably use them. A

useful addition to this library is visual simultaneous

localization and mapping. Visual SLAM, allows one to

simultaneously obtain a map of an unknown environment

and locate an uncontrolled monocular camera within the

environment. The aim of this effort is to integrate this

visual SLAM algorithm into the SFM library.

Keywords – SIFT, Structure from motion, Kalman Filter

1. INTRODUCTION

There are a lot of ongoing efforts in the domain of SLAM

and real-time monocular SLAM in particular. Some

significant contributions in this domain are by Davison et

al. [1]. Our efforts involved understanding the current

state of the technology and to suitably incorporate it in the

library.

The report has been structured to first give an overview of

the basic simultaneous localization and mapping

methodology in Section 2. Monocular SLAM which is

based on the basic SLAM methodology is then explained

followed by a more efficient, unified inverse depth

parameterization model for MonoSLAM. This is followed

by a summary of experiments and results in Section 3 and

Conclusions.

1
 SFM library is an ongoing project in the Advanced

Multimedia Processing(AMP) lab at Carnegie Mellon University

2. OVERVIEW OF CONCEPTS

2.1. Simultaneous Localization and Mapping (SLAM)

Let us consider the classic case of a robot placed in a

known environment. In this case, a map of landmark

locations within the environment is known a priori. The

robot can thus proceed to take measurements of the known

landmark locations, and use these measurements to

determine its own location within the environment. This is

known as the localization problem. A counter case would

be one wherein the motion of the robot within the

environment is known a priori. The robot could then take

measurements of the environment and build up a map of

the environment from these measurements. This is known

as the mapping problem [2].

SLAM aims to solve the localization and mapping

problems together, i.e. we could place a robot in an

unknown location in an unknown environment and have

the robot incrementally build a map of this environment

while simultaneously using this map to compute its own

location. This is achieved by application of a landmark

extraction algorithm and a Kalman filter loop.

A significant part of SLAM is the ability of the robot to

recognize and initialize key features from the environment

[3]. These features should satisfy certain important

conditions: they should be stationary, easily re-observable,

and easily distinguishable from each other. A feature

extraction algorithm such as Harris corner detection or the

Shi & Tomasi algorithm is used to locate features in the

environment which satisfy these conditions.

The heart of the SLAM process lies in the Kalman filter

loop, which maintains the position and uncertainty of the

robot and the landmarks at any given time The estimated

position of the robot as well as the estimated positions of

the landmarks is put together into a state vector, and in

parallel, a covariance matrix representing the ambiguity or

uncertainty of each of these positions is also maintained.

The Kalman filter works in three distinct steps: predict,

mailto:akowdle@andrew.cmu.edu
mailto:kevinchang@cmu.edu
mailto:tsuhan@cmu.edu

measure and update. In the prediction stage, the state

vector and covariance matrix for the next time instant are

predicted using the current state and the motion model. In

the measurement stage, the actual measurement of range

and bearing is made; usually using an on-board device like

an odometer. In the update stage, based on the error

between the prediction and the measurement, the state

vector and the covariance matrix are updated using the

kalman gain [4].

In addition to the uncertainty in the position of the robot

and feature points, the covariance matrix also represents

the covariance between the feature points. Due to the

nature of the kalman loop, the error and thus the kalman

gain reflects on the entire covariance matrix. Thus, the

uncertainty of the system about the locations of each

feature point keep decreasing as the system observes more

of the environment.

2.2. Monocular SLAM

A successful application of the SLAM methodology has

been introduced by Davison et al. [1] where a real-time

algorithm which can recover the 3D trajectory of a

monocular camera has been described.

The key in this application is modeling the uncontrolled

motion of the camera. As this is a freely moving camera, a

linear motion model would not work. In order to account

for this, a constant velocity, constant angular velocity

model is assumed. This imposes some smoothness into the

motion and assumes that large abrupt accelerations are

unlikely. In order to account for this non-linear motion

model, the extended kalman filter (EKF) takes the place of

the kalman loop. EKF functions along the same lines as

the kalman filter with the non-linear motion model being

the only difference.

The state of the system as explained before is described by

the state vector and covariance matrix. The state vector in

this case however has to describe the state of the camera in

3D and the positions of the feature points. The state of the

camera contains 13 parameters – 3 parameters describing

the position of the camera, 4 parameters representing the

quaternion describing the orientation of the camera and 6

parameters describing the linear velocity vector and

angular velocity vector. The feature points are defined by

their 3D locations with respect to the world. The whole

system is described as a probabilistic 3D map modeled by

a multi-variate gaussian with the mean as the state vector

and variance as the covariance matrix. The state vector

and covariance matrix are maintained over the whole

motion of the camera as the main intent of the application

is closed loop mapping, i.e. being able to recognize a

feature which was initialized a long time back.

MonoSLAM is derived from the SLAM methodology and

thus works along the same lines. The feature initialization

however, is different. The drawback of this approach is

that it requires a template at the system initialization step

to describe the scale of measurement and initialize the

EKF process. When the system is short of a minimum

number of feature points it decides to initialize new

features. The features points are detected using Shi and

Tomasi’s feature detection algorithm. The features at this

stage are however only partially initialized and thus are

not added to the EKF map. At this stage, the system has an

estimate of the epipolar line along which the feature lies,

with low uncertainty but, does not have any information

about the depth. An assumption made at this stage is to

assume that the figure lies at a distance of 0.5m to 5m

from the camera. Over the next few frames, depth

hypotheses evenly distributed along the epipolar line from

0.5m to 5m are tested to finally narrow down on a depth

value which gives highest amount of correlation for that

feature. The feature is then assumed to be fully initialized

and becomes part of the EKF map.

Once the feature is initialized, the rest of the process is

standard EKF procedure. The prediction stage involves the

prediction of the next state of the camera and feature

points. The measurement stage involves performing a

correlation search around the predicted region to find the

actual position of the features. The update stage is

updating the state vector and covariance matrix based on

the error in prediction.

2.3. Unified inverse depth parameterization

A monocular camera measures the bearing of image

features. As explained in the previous sections, to infer the

depth of a feature the camera must observe it repeatedly as

it translates through the scene, each time capturing a ray of

light from the feature to its optic center. The angle

between the captured rays is the feature's parallax – this is

what allows its depth to be estimated. For instance, a star

in the sky exhibits very low parallax even in the presence

of significant motion due to its extreme depth. This

parallax has been studied and modeled to obtain an

estimate of the depth, using inverse depth parameterization

[5].

A limitation of Davison’s MonoSLAM approach as

highlighted by Montiel et al. [5] is that, it makes use of

features which are close to the camera, which exhibit

significant parallax and would therefore work in room-

scale scenes. Another limitation put forth, refers to the

feature initialization required in Davison’s approach [1].

The delayed feature initialization which requires the

feature to be visible for a few frames before it is

considered as a fully initialized feature means that,

observing these features would not help update the pose of

the camera till it is fully initialized.

The unified inverse depth parameterization overcomes

these limitations by defining a way of representing a point

at infinity. The idea is that, no observable feature is truly

infinitely far from the camera. A point at infinity is simply

far enough away relative to the camera motion since it has

been observed that no parallax has been observed. This

method requires no feature initialization, the features are

added to the map right from the point it is first viewed and

the standard EKF loop takes care of updating its position

and the pose of the camera.

The fundamental operation of the inverse depth algorithm

is similar to other MonoSLAM implementations, in that,

the standard EKF loop is used to converge to the location

of the feature. The main difference however, is the

representation of the feature points which allows for

modeling points at extreme depth.

Fig. 1: Feature parameterization and measurement equation

The position of each new 3D feature i added to the map is

parameterized by a six dimension state vector (Fig. 1).

Yi = (xi, yi, zi, θi, φi, ρi)
T

The state codes the ray for the first point observation as:

(xi, yi, zi), the camera optical center where the 3D point

was first observed; θi and φi, the azimuth and elevation for

the ray directional vector m(θi, φi). The point depth along

the ray di is coded by its inverse ρi = 1/di. In other words,

every feature point is modeled as follows.

Using the above representation, a point even at extreme

depth can be modeled when the inverse depth ρi tends to

zero.

The working of this algorithm is very similar to Davison’s

implementation. Consider the above representation as

analogous to a fully initialized feature in the camera state

vector. The inverse depth for the feature is initially set to a

low value. The EKF process suitably corrects it to finally

converge to an appropriate depth and position, as the

feature is re-observed over the sequence of images.

 2.4. Integration with the structure from motion

library

Simultaneous localization and mapping, MonoSLAM in

particular, provides for a significant addition to our

structure from motion library. MonoSLAM allows one to

obtain the trajectory of a freely moving monocular camera.

It allows for drift free performance which outperforms

structure from motion (SFM). Integrating MonoSLAM

with our SFM library would thus greatly benefit for certain

applications.

The integration of MonoSLAM with the rest of the library

is achieved by using the SIFT feature trajectory obtained

from the SFM library. The library returns the trajectory of

all the SIFT features as its output. The features found in

every frame can replace the feature initialization step in

the MonoSLAM system. Further, the entire matching

process which is a key step of the EKF loop, can be

removed by using the SIFT feature trajectory. The results

from this integration are described in the next section.

3. EXPERIMENTS AND RESULTS

3.1. Structure and motion viewer

In order to obtain a good visualization of the camera

trajectory and the 3D locations of the feature points, a

Structure and motion (SAM) viewer, has been developed

by Tzung-Han Lin
2
 from ITRI.

The viewer accepts the intrinsic matrix of the camera; the

extrinsic matrix which gives the position of the camera

with respect to the world for every frame. The viewer also

accepts the set of 3D feature point locations and the color

of these feature points. Using these parameters the viewer

gives a 3D scatter of the feature points along with the

camera positions and trajectory. This viewer has been used

in all our experiments.

2
 Tzung-Han Lin from Industrial technology and research institute

(ITRI), Taiwan worked with the AMP lab at CMU and developed the

SAM viewer

 Fig. 2 Fig.3(a) Fig.3(b)

Fig.2: Image from the test video sequence; Fig.3: (a) Camera trajectory (where each camera position has been labeled in green) and

feature point scatter as seen in the viewer. (b) Another view of the scatter for better 3D visualization.

3.2. Inverse depth parameterization

The motivation behind this is to study and understand the

impact of inverse depth parameterization on an outdoor

scene with feature points even at considerable depth. The

experiments were carried out using a matlab code

developed by Montiel et al. obtained from the SLAM

summer school (2006) database [6]. The system was

incomplete in a sense, as it lacked any form of feature

extraction. The system required manual initialization of

features. However, in order to complete the system, we

would require some form of feature initialization in the

system.

The integration of the system with the SFM library was

found to fill in this gap. As explained in the earlier section

on the SFM library, the SIFT feature trajectory can be

used to integrate the two systems together. The SIFT

feature trajectories obtained from the library, gives the

frames between which a particular feature is observed,

along with the positions of these key-points in each frame.

The SIFT feature trajectories were used to initialize new

features in the system. The trajectory of these features,

across the frames it is visible was used to replace the

matching process of the EKF loop, thus integrating the two

systems together.

The matlab code-base was modified to accept any video

sequence from the user. The output parameters of the

system were then modified as required by the viewer. One

of the images used in our experiment is shown in Fig. 2,

the some snapshots of the output as seen in the viewer is

shown in Fig. 3a and Fig. 3b. (Note: In order to provide a

better visualization of the object in view a specific set of

feature points have been selected here)

4. CONCLUSION

The results from the experiments show that, the SIFT

features obtained from the SFM library can be used with

the EKF loop of a SLAM methodology to achieve efficient

real time localization and mapping. The integration was

done offline, by using the SIFT trajectories in the matlab

code-base of monocular SLAM. Integrating the

MonoSLAM codebase directly into the SFM library can

result in a unified solution for simultaneously recovering

the structure of the environment and the motion of the

camera. The next phase of work would be a real-time

implementation of the process described in the paper.

5. REFERENCES

[1] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse

“MonoSLAM: Real-Time Single Camera SLAM,” IEEE

transactions on Pattern Analysis and Machine Intelligence, Vol.

29, No. 6, 2007.

[2] H. Durrant-Whyte, D. Rye, E. Nebot, “Localisation of

Automatic Guided Vehicles”, ISRR 1995

[3] S. Riisgaard, and M. R. Blas, “SLAM for dummies”.

[4] Drexel University Lectures, “Simultaneous Localization and

Mapping (SLAM)”

[5] J. M. M. Montiel, J. Civera and A. J. Davison, “Inverse

Depth Parametrization for Monocular SLAM,” RSS 2006.

[6] http://www.robots.ox.ac.uk/~SSS06/, “SLAM using

monocular vision”, practical session at the SLAM summer

school, 2006.

http://www.robots.ox.ac.uk/~SSS06/

