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Abstract

Obstacle avoidance based on a monocular
system has become a very interesting area
in robotics and vision field. However, most
of the current approaches work with a pre-
trained model which makes an independent
decision on each image captured by the cam-
era to decide whether there is an impending
collision or the robot is free to go. This ap-
proach would only work in the restrictive set-
tings the model is trained in.

In this project, we propose a structured
learning approach to obstacle avoidance
which captures the temporal structure in the
images captured by the camera and takes a
joint decision on a group of frames (images
in the video). We show through our experi-
ments that this approach of capturing struc-
ture across the frames performs better than
treating each frame independently. In addi-
tion, we propose an online learning formu-
lation of the same algorithm. We allow the
robot without a pre-trained model to explore
a new environment and train an online model
to achieve obstacle avoidance.

1. Introduction

Obstacle avoidance based on a monocular system has
become a very interesting area in robotics and vision
field (Kim et al., 2006; Odeh et al., 2009; Michels et al.,
2005; Sofman et al., 2006; Chen & Liu, 2007). How-
ever, most of the current approaches work with a pre-
trained model which makes an independent decision on
each image captured by the camera to decide whether
there is an impending collision or the robot is free to
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go. This approach would only work in the restrictive
settings the model is trained in. For example, Michels
et. al. proposed a system with a robot and a build-in
camera (Michels et al., 2005). By analyzing the ac-
quired images and training a model using the ground
truth laser scan depth maps, the robot can estimate
the rough depth of the scene in each frame and there-
fore navigate itself without collision.

In this project, there two main contributions. Firstly,
the task of obstacle avoidance using images obtained
using a monocular camera should not be treated as an
independent decision problem working on each frame.
We change this formulation to capture the structure
in a group of frames and take a joint decision on these
frames. We use a hidden markov model to capture
this structure between the frames. Secondly, we want
to relax the requirement of the labeled data to obtain
a trained model for obstacle avoidance. We develop
an online formulation of the structured learning ap-
proach proposed where we allow the robot without a
pre-trained model to explore a new environment and
train an online model to achieve obstacle avoidance.
We achieve this by developing an approach to obtain
positive samples (training examples of impending col-
lision) while the robot is exploring the scene, using
visual features. Once we have the training examples
we can use the structured learning formulation to train
an online model for obstacle avoidance. We update the
model while the robot explores the environment as and
when it receives more training examples.

The rest of the paper is organized as follows. We ex-
plain the feature design and visual features we use,
in Section 2. We describe the dataset captured and
the experiments with structured learning in Section 3
followed by the online implementation of structured
learning approach in Section 4. We finally conclude in
Section 5.
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Figure 1. Feature design: Image histogram. Images on the
left column and corresponding global image level histogram
on the right.

2. Feature design

In this section, we describe the features we use. An
intuition behind these features is that, when we con-
sider a robot moving on the ground, an obstacle or an
impending collision would be characterized by some
sort of an occlusion in the lower portion of the image
captured.

2.1. Histogram

We use the histogram of the pixel color intensities as
a descriptor for each image. In particular, we consider
two types of histograms to describe the image.

The first histogram is a global image level histogram of
the pixel intensities. The intuition behind this feature
is that when the robot gets very close to an obstacle
the image would become occluded by the obstacle as it
approaches it. This results in the feature moving from
a distributed histogram to a histogram which peaks
near darker intensities as shown in Figure 1.

The second histogram captures some spatial charac-
teristics in the image. We split the image into rows
of width 30 pixels. We then take a histogram over
the three color channels in each of these sub-blocks.
This concatenated histogram forms our second fea-
ture. This feature is motivated by the fact that the
rows at the bottom of the image would have a spread
out histogram unless there is an obstacle nearby. This
is shown in Figure 2.
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Figure 2. Feature design: Row wise color histogram. Im-
ages on the left column with a sub-block of a set of rows
shown with a brace and color histogram corresponding to
the braced region on the right.

2.2. Edge gist

The edges in an image can also give a lot of information
about obstacles in the path. In order to capture this
in a descriptor, we use a well known descriptor called
gist (Torralba et al., 2006).

We would want to describe only the dominant edges
(lines) in the image and not all the finer edges (like
edges which would show up on the ground). In order
to achieve this, we first connect edges along the same
direction together to result in a sparser set of dominant
edges in the image as shown in Figure 3(b). The im-
age is then split into 16 sub-blocks as shown. Within
each sub-block an orientation histogram is used to de-
scribe the edges within the block i.e. a histogram of
the orientations at each point within the sub-block.
These set of 16 histograms concatenated together is
what we call the edge gist. Based on the distribution
of the dominant edges different bins in the descriptor
dominate as seen in Figure 3(c).

3. Experiments

In this section, we first describe the dataset we use
for the evaluation experiments. We first evaluate the
performance of taking independent decisions on each
frame treating it as a classification problem (Clear to
go vs. Impending collision). We then evaluate the
performance of casting this problem as a structured
prediction problem using a hidden markov model and
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Figure 3. Feature design: Edge gist (a) Some sample images; (b) The detected dominant edges in the image. The 4x4
sub-block division is shown overlayed on the image; (c) The orientation histogram from all the 16 sub-blocks concatenated

together to form the edge gist descriptor.

Figure 4. Dataset: Some sample images from the 5 videos
captured for the evaluation experiments.

taking a joint decision on the frames.

3.1. Dataset

We collected a set of 5 videos adding up to about
10,000 frames. Each frame was then manually labeled
with a binary label 1/0 indicating an impending col-
lision or clear to go respectively. Some sample frames
as shown in Figure 4 with a sample labeling in Figure
5.

3.2. Binary classification using an SVM

We use the labeled data to first train a binary classifier
to classify between impending collision (positive class)
and clear to go (negative class). We use an SVM with

(a) Clear to go (b) Impending collision

Figure 5. Some sample labeled frames.

a gaussian kernel to perform the classification. We
concatenate all the features described in Section 2 as
the feature vector in this case. We use the frames in
2 videos for training and the frames from the other 3
videos as testing and performed cross validation. The
resulting accuracy in this case was 79.5 £ 0.01%.

3.3. Structured prediction

The images captured from an autonomous robot are
in effect highly correlated since it captures images at
a steady rate while it moves around. Thus, taking an
independent decision on each frame would not be the
best approach.

We try to capture the structure in this output space by
using a HMM (Tsochantaridis et al., 2004). We link
together a group of 10 consecutive frames as shown in
Figure 6 and take a joint decision on the group. We use
the HMM implementation by Joachims et al. (2009)
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Figure 6. Structured learning: An illustration to show the
linking up of consecutive frames to take a joint decision on
the frames.

where the output space is again a 1/0 with a group of
10 frames linked together as one training instance.

We again use the frames in 2 videos for training and
the frames from the other 3 videos as testing and per-
formed cross validation. The resulting accuracy using
the HMM was 83.5 4+ 0.01% giving us a 4% increase
from the binary classification. We thus implement an
online formulation of the structured learning on the
robot as described in the next section.

4. Online structured learning

In the previous sections, one drawback of the system
would be its requirement of intensive labeling from hu-
man. However, the advantage of a mobile robot is its
ability to interact with the environment. Therefore
we develop an online updating scheme which requires
no labeling and lets the robot develop its environment
autonomously. The flowchart of the online updating
system is shown in Fig.7. It could be roughly divided
into two steps: training and testing. We will introduce
them respectively in the following sections.

4.1. training

The training step works as an initialization of the sys-
tem. During the training, we let the robot automati-
cally label the acquired images by some simple vision
features. The robot keeps going forward until it iden-
tifies that it is blocked. The blockage is defined in two
ways:

1. The color distribution of the current image. If the
robot is approaching into an obstacle, most likely the
camera will be covered. We can calculate the color
distribution to serve as an indication for blockage, i.e
the color histogram. Once the camera is blocked by
an obstacle, most color will be fallen into few bins,
and the other bins will have very low values. Thus by
counting the percentage of bins that is lower than a
threshold will function as a signal for obstacle.

2. The average change of color in each pixel. There are
situations that the robot encounters some small obsta-
cles. In that case the camera is not blocked because the
obstacle only stops the wheels, and thus the color dis-
tribution will not help identifying the obstacle. Then
we check the average color difference between the cur-
rent frame and the previous frame. If it is clear ahead,
the color will keep changing because the robot is fol-
lowing the command of going forward. On the other
hand when the robot is blocked, the color would not
change much even if it tries to go forward.

Once the robot identifies the obstacle in the current
frame, it labels this image as an obstacle (positive).
Moreover, since it discovers the obstacle very lately by
taking aggressive moving decision (keep moving for-
ward), a few previous labels should also be considered
as obstacle to avoid hitting obstacle in the future. So
the system the previous 10 images as obstacles also,
and then moves into another direction. When the
robot can go forward, the acquired frames are labeled
as clear (negative).

4.2. testing and updating the model

After the system have collected a few positive and neg-
ative samples, we are able to train an initial model for
detecting the obstacle following the routine in the pre-
vious sections. Features are extracted for each frames
and the model is trained by structure SVM. And then
for every step, we test the model on the current frame.
While the prediction is negative, i.e the path is clear,
the robot will keep moving forward. Whenever the pre-
diction becomes positive (obstacle ahead), the robot
turns roughly 90° and moves in another direction to
avoid the obstacle.

In many cases the first few positive instances (obsta-
cles) are not representative for detecting all the colli-
sion. Therefore we build an online updating model.
Besides relying on the decision from the prediction
of the model, we constantly evaluate the two crite-
ria in the training step for identifying the obstacles,
and record the labels. Once there is an false negative,
i.e the prediction is negative (clear to go) but the pre-
vious two criteria identify that the robot is blocked,
which means that the robot encounters a new obsta-
cle. Then the current and a few previous frames are
labeled as positive, and we re-train the model with all
the images and labels. After this updating step, we
evaluate the future images with the new model, and
update the model again when the robot encounter an-
other new obstacle. The routine can be interpreted in
the loop in Fig.7.
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Figure 7. Flowchart of online updating the model
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Figure 8. Experiment of online updating model in real environment. (a): training phase when the robot is collecting the
initial training instances. (b) the robot can move away in distance before hitting the obstacle after training. (c) the robot

can identify new obstacles and avoid hitting it.

4.3. experiment in real environment

We perform the online updating model in a real envi-
ronment setting on Rovio robot. Shown in Fig.8, the
environment includes some obstacles such as boxes in
different colors, computer cases etc. Fig.8 (a) is the
training phase of the Rovio robot. It is collecting the
training instances and identifies the obstacle until the
camera is blocked. After training the model with a
few instances, the robot can predict the obstacle in
advance before hitting it. Fig.8 (b) shows the rela-
tive position between the robot and the obstacle when
the robot is about to make a turn and move into an-
other direction. Also the robot can predict collision for
some unseen objects, shown in Fig.8 (c), because the
features we use are representative for general obsta-
cles. The whole experiment is recorded as a video clip
and could be viewed in the supplementary materials.

5. Conclusions and discussion

In this paper we present an autonomous robot system
that can avoid obstacle based on vision only. We eval-

uate different features for predicting an obstacle on a
single image, and select some that are useful for the
task. We experiment for different classifying models.
With the same features, the structure SVM can give
a better performance compared to the binary classi-
fier. We believe the main reason is that for predicting
the obstacles, the collected images are not indepen-
dent from each other. They are highly correlated and
the chain model can well represent such relationship.
Therefore the structure SVM achieves better result in
quantitative evaluation.

Moreover, we build a system that requires no human
labeling and allow the robot interact with the envi-
ronment on its own, labeling each frames and online-
updating the model. We experiment the system in a
real environment setting and implement the algorithm
on the Rovio robot. The experiment proves that our
model works. The robot can predict collision in ad-
vance after initial training, and is even able to avoid
an unseen obstacle.

One extension to the system would be multiple com-
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mands/outputs after encountering an obstacle. Cur-
rently the robot will only turn a fix degree to the
right and move to another different once it find it-
self blocked. The output y of the structure SVM is
a binary value with 1 indicating the obstacle and 0
for clearance. However, multiple choice of y would
be preferable, and they would be asking the robot to
move left, right, or backward etc. Complicate deci-
sions would make the robot appear more intelligent in
avoiding the obstacle. And the robot can finish some
complex tasks efficiently, like traveling from A place
to B, rather than simply randomly exploring the envi-
ronment.

Also one drawback of online updating model is the
tendency of making a conservative system. Since we
only update the model once it encounters a false neg-
ative, regardless of false positive, the model could be-
come more conservative after several updates, because
the safest movement would be predicting everything
as positive. One solution could be setting another cri-
teria for detecting the clear path, and updating the
model when there is a false positive.

Since the robot can record the rough distance it has
moved, one interesting extension would be predicting
the distance in a single image. The goal is similar
to (Michels et al., 2005), however in this case we no
longer require laser data for estimating the depth. The
robot can give the depth information through interac-
tion with the environment. Another interesting exten-
sion would be applying the apprenticeship learning in
this scenario. Although the robot is running automat-
ically, labeling the instance by aggressively hitting the
object is not favored in many situation. On the other
hand, labeling each frame by human is tedious and in-
tensive for there are usually thousands of frames in a
short video clip. Apprenticeship learning is a neutral
solution. We can guide the robot to move for a short
period of time, and then the robot can learn policy of
the human behavior. Therefore after that it can run
autonomously, avoiding the obstacle without guidance.
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