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SYNOPSIS 

 

 
Speech Recognition is the process of automatically recognizing a certain word 

spoken by a particular speaker based on individual information included in speech 

waves. This technique makes it possible to use the speaker‟s voice to verify his/her 

identity and provide controlled access to services like voice based biometrics, database 

access services, voice based dialing, voice mail and remote access to computers. 

 

Signal processing front end for extracting the feature set is an important stage in 

any speech recognition system. The optimum feature set is still not yet decided though 

the vast efforts of researchers. There are many types of features, which are derived 

differently and have good impact on the recognition rate. This project presents one of 

the techniques to extract the feature set from a speech signal, which can be used in 

speech recognition systems. 

   

  The key is to convert the speech waveform to some type of parametric 

representation (at a considerably lower information rate) for further analysis and 

processing. This is often referred as the signal-processing front end. A wide range of 

possibilities exist for parametrically representing the speech signal for the speaker 

recognition task, such as Linear Prediction Coding (LPC), Mel-Frequency Cepstrum 

Coefficients (MFCC), and others. MFCC is perhaps the best known and most popular, 

and these will be used in this project. MFCCs are based on the known variation of the 

human ear‟s critical bandwidths with frequency filters spaced linearly at low 

frequencies and logarithmically at high frequencies have been used to capture the 

phonetically important characteristics of speech. However, another key characteristic of 

speech is quasi-stationarity, i.e. it is short time stationary which is studied and analyzed 

using short time, frequency domain analysis. 

 

In this project, we propose to build a simple yet complete and representative 

automatic speaker recognition system, as applied to a voice based biometric system i.e. 

a voice based access control system. To achieve this, we have first made a comparative 

study of the MFCC approach with the Time domain approach for recognition by 

simulating both these techniques using MATLAB 7.0 and analyzing the consistency of 

recognition using both the techniques. This is followed by the implementation of the 

time domain approach on the TMS 320 C6713 DSK.  

 

 The voice based biometric system is based on isolated or single word 

recognition. A particular speaker utters the password once in the training session so as 

to train and store the features of the access word. Later in the testing session the user 

utters the password again in order to achieve recognition if there is a match. The feature 

vectors unique to that speaker are obtained in the training phase and this is made use of 

later on to grant authentication to the same speaker who once again utters the same 

word in the testing phase. At this stage an intruder can also test the system to test the 

inherent security feature by uttering the same word.  
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1.1 INTRODUCTION 

 

The concept of a machine than can recognize the human voice has long been an 

accepted feature in Science Fiction.  From „Star Trek‟ to George Orwell‟s „1984‟ - 

“Actually he was not used to writing by hand.  Apart from very short notes, it was usual 

to dictate everything into the speakwriter.” - It has been commonly assumed that one 

day it will be possible to converse naturally with an advanced computer-based system.  

Indeed in his book „The Road Ahead‟, Bill Gates (co-founder of Microsoft Corp.) hails 

Automatic Speaker Recognition (ASR) as one of the most important innovations for 

future computer operating systems.  

 

From a technological perspective it is possible to distinguish between two broad 

types of ASR: „direct voice input‟ (DVI) and „large vocabulary continuous speech 

recognition‟ (LVCSR).  DVI devices are primarily aimed at voice command-and-

control, whereas LVCSR systems are used for form filling or voice-based document 

creation.  In both cases the underlying technology is more or less the same.  DVI 

systems are typically configured for small to medium sized vocabularies (up to several 

thousand words) and might employ word or phrase spotting techniques.  Also, DVI 

systems are usually required to respond immediately to a voice command.  LVCSR 

systems involve vocabularies of perhaps hundreds of thousands of words, and are 

typically configured to transcribe continuous speech.  Also, LVCSR need not be 

performed in real-time - for example, at least one vendor has offered a telephone-based 

dictation service in which the transcribed document is e-mailed back to the user. 

 

From an application viewpoint, the benefits of using ASR derive from providing 

an extra communication channel in hands-busy eyes-busy human-machine interaction 

(HMI), or simply from the fact that talking can be faster than typing.  Also, whilst 

speaking to a machine cannot be described as natural, it can nevertheless be considered 

intuitive; as one ASR advertisement declared “you have been learning since birth the 

only skill needed to use our system”. 
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1.2 MOTIVATION 

 

The motivation for ASR is simple; it is man‟s principle means of 

communication and is, therefore, a convenient and desirable mode of communication 

with machines. Speech communication has evolved to be efficient and robust and it is 

clear that the route to computer based speech recognition is the modeling of the human 

system. Unfortunately from pattern recognition point of view, human recognizes speech 

through a very complex interaction between many levels of processing; using syntactic 

and semantic information as well very powerful low level pattern classification and 

processing. Powerful classification algorithms and sophisticated front ends are, in the 

final analysis, not enough; many other forms of knowledge, e.g. linguistic, semantic 

and pragmatic, must be built into the recognizer. Nor, even at a lower level of 

sophistication, is it sufficient merely to generate “a good” representation of speech (i.e. 

a good set of features to be used in a pattern classifier); the classifier itself must have a 

considerable degree of sophistication. It is the case, however, it do not effectively 

discriminate between classes and, further, that the better the features the easier is the 

classification task. 

 

          Automatic speech recognition is therefore an engineering compromise between 

the ideal, i.e. a complete model of the human, and the practical, i.e. the tools that 

science and technology provide and that costs allow. 

 

          At the highest level, all speaker recognition systems contain two main modules 

(refer to Fig 1.1): feature extraction and feature matching. Feature extraction is the 

process that extracts a small amount of data from the voice signal that can later be used 

to represent each speaker. Feature matching involves the actual procedure to identify 

the unknown speaker by comparing extracted features from his/her voice input with the 

ones from a set of known speakers. We will discuss each module in detail in later 

sections.  
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Figure 1.1: Speaker Identification (Training) 

 

Figure 1.2: Speaker verification (Testing) 

 

All Recognition systems have to serve two different phases. The first one is 

referred to the enrollment sessions or training phase while the second one is referred to 

as the operation sessions or testing phase. In the training phase, each registered 

speaker has to provide samples of their speech so that the system can build or train a 

reference model for that speaker. In case of speaker verification systems, in addition, a 

speaker-specific threshold is also computed from the training samples. During the 

testing (operational) phase (see Figure 1.2), the input speech is matched with stored 

reference model(s) and recognition decision is made.  

Speech recognition is a difficult task and it is still an active research area. 

Automatic speech recognition works based on the premise that a person‟s speech 

exhibits characteristics that are unique to the speaker. However this task has been 

challenged by the highly variant of input speech signals. The principle source of 

variance is the speaker himself. Speech signals in training and testing sessions can be 

greatly different due to many facts such as people voice change with time, health 

conditions (e.g. the speaker has a cold), speaking rates, etc. There are also other factors, 

beyond speaker variability, that present a challenge to speech recognition technology. 
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Examples of these are acoustical noise and variations in recording environments (e.g. 

speaker uses different telephone handsets). The challenge would be make the system 

“Robust”. 

So what characterizes a “Robust System”? When people use an automatic 

speech recognition (ASR) system in real environment, they always hope it can achieve 

as good recognition performance as human's ears do which can constantly adapt to the 

environment characteristics such as the speaker, the background noise and the 

transmission channels. Unfortunately, at present, the capacities of adapting to unknown 

conditions on machines are greatly poorer than that of ours. In fact, the performance of 

speech recognition systems trained with clean speech may degrade significantly in the 

real world because of the mismatch between the training and testing environments. If 

the recognition accuracy does not degrade very much under mismatch conditions, the 

system is called “Robust”. 

 

1.3 ORGANIZATION OF THE REPORT 

 The report first introduces the reader to speech processing by giving a 

theoretical overview; with a stress on speech recognition to build a foundation for our 

project. In Chapter 3, we describe the process of feature extraction, which outlines the 

steps involved in extracting the feature vectors required to suitably represent the speech 

uttered. 

 In Chapter 4, we discuss in detail the algorithms which we have simulated and 

tested using MATLAB, with a comparative study of both. This is followed by the 

architectural details of the TMS320C6713 digital signal processor in Chapter 5, which 

we have used for the implementation of our project. In the next chapter, we have 

discussed some optimization steps to be followed while implementing an ASR system 

on the DSK. 

 The source code in MATLAB and C, for the simulation and the implementation 

of our speech recognition algorithm is provided in Chapter 7. The report ends with 

conclusion and scope for future work in Chapter 8.    
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2.1 INTRODUCTION 

 Speech processing is the study of speech signals and the processing methods of 

these signals. The signals are usually processed in a digital representation whereby 

speech processing can be seen as the interaction of digital signal processing and natural 

language processing. 

 Natural language processing is a subfield of artificial intelligence and 

linguistics. It studies the problems of automated generation and understanding of 

natural human languages. Natural language generation systems convert information 

from computer databases into normal-sounding human language, and natural language 

understanding systems convert samples of human language into more formal 

representations that are easier for computer programs to manipulate. 

 

Speech coding:  

It is the compression of speech (into a code) for transmission with speech 

codecs that use audio signal processing and speech processing techniques. The 

techniques used are similar to that in audio data compression and audio coding where 

knowledge in psychoacoustics is used to transmit only data that is relevant to the 

human auditory system. For example, in narrow band speech coding, only information 

in the frequency band of 400 Hz to 3500 Hz is transmitted but the reconstructed signal 

is still adequate for intelligibility. 

However, speech coding differs from audio coding in that there is a lot more 

statistical information available about the properties of speech. In addition, some 

auditory information which is relevant in audio coding can be unnecessary in the 

speech coding context. In speech coding, the most important criterion is preservation of 

intelligibility and "pleasantness" of speech, with a constrained amount of transmitted 

data. 

It should be emphasized that the intelligibility of speech includes, besides the 

actual literal content, also speaker identity, emotions, intonation, timbre etc. that are all 

important for perfect intelligibility. The more abstract concept of pleasantness of 

degraded speech is a different property than intelligibility, since it is possible that 

degraded speech is completely intelligible, but subjectively annoying to the listener. 

 

 

http://en.wikipedia.org/wiki/Timbre
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Speech synthesis: 

Speech synthesis is the artificial production of human speech. A text-to-speech 

(TTS) system converts normal language text into speech; other systems render 

symbolic linguistic representations like phonetic transcriptions into speech. 

Synthesized speech can also be created by concatenating pieces of recorded 

speech that are stored in a database. Systems differ in the size of the stored speech 

units; a system that stores phones or diphones provides the largest output range, but 

may lack clarity. For specific usage domains, the storage of entire words or sentences 

allows for high-quality output. Alternatively, a synthesizer can incorporate a model of 

the vocal tract and other human voice characteristics to create a completely "synthetic" 

voice output. 

The quality of a speech synthesizer is judged by its similarity to the human 

voice, and by its ability to be understood. An intelligible text-to-speech program allows 

people with visual impairments or reading disabilities to listen to written works on a 

home computer. Many computer operating systems have included speech synthesizers 

since the early 1980s. 

 

Voice analysis: 

Voice problems that require voice analysis most commonly originate from the 

vocal cords since it is the sound source and is thus most actively subject to tiring. 

However, analysis of the vocal cords is physically difficult. The location of the vocal 

cords effectively prohibits direct measurement of movement. Imaging methods such as 

x-rays or ultrasounds do not work because the vocal cords are surrounded by cartilage 

which distorts image quality. Movements in the vocal cords are rapid, fundamental 

frequencies are usually between 80 and 300 Hz, thus preventing usage of ordinary 

video. High-speed videos provide an option but in order to see the vocal cords the 

camera has to be positioned in the throat which makes speaking rather difficult. 

Most important indirect methods are inverse filtering of sound recordings and 

electroglottographs (EGG). In inverse filtering methods, the speech sound is recorded 

outside the mouth and then filtered by a mathematical method to remove the effects of 

the vocal tract. This method produces an estimate of the waveform of the pressure pulse 

which again inversely indicates the movements of the vocal cords. The other kind of 

inverse indication is the electroglottographs, which operates with electrodes attached to 

the subject‟s throat close to the vocal cords. Changes in conductivity of the throat 

http://en.wikipedia.org/wiki/Speech
http://en.wikipedia.org/wiki/Symbolic_linguistic_representation
http://en.wikipedia.org/wiki/Phonetic_transcription
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Phone
http://en.wikipedia.org/wiki/Diphone
http://en.wikipedia.org/wiki/Vocal_tract
http://en.wikipedia.org/wiki/Visual_impairment
http://en.wikipedia.org/wiki/Reading_disability
http://en.wikipedia.org/wiki/X-ray
http://en.wikipedia.org/wiki/Ultrasound
http://en.wikipedia.org/wiki/Fundamental_frequency
http://en.wikipedia.org/wiki/Fundamental_frequency
http://en.wikipedia.org/wiki/Hertz
http://en.wikipedia.org/w/index.php?title=Inverse_filtering&action=edit
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indicate inversely how large a portion of the vocal cords are touching each other. It thus 

yields one-dimensional information of the contact area. Neither inverse filtering nor 

EGG is thus sufficient to completely describe the glottal movement and provide only 

indirect evidence of that movement. 

 

Speech recognition: 

Speech recognition is the process by which a computer (or other type of 

machine) identifies spoken words. Basically, it means talking to your computer, and 

having it correctly recognize what you are saying. This is the key to any speech related 

application. 

As shall be explained later, there are a number ways to do this but the basic principle is 

to somehow extract certain key features from the uttered speech and then treat those 

features as the key to recognizing the word when it is uttered again.  

 

2.2 SPEECH RECOGNITION BASICS 

Utterance 

An utterance is the vocalization (speaking) of a word or words that represent a 

single meaning to the computer. Utterances can be a single word, a few words, a 

sentence, or even multiple sentences. 
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Figure 2.1: Utterance of “HELLO” 

Speaker Dependence 

Speaker dependent systems are designed around a specific speaker. They 

generally are more accurate for the correct speaker, but much less accurate for other 

speakers. They assume the speaker will speak in a consistent voice and tempo. Speaker 

independent systems are designed for a variety of speakers. Adaptive systems usually 
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start as speaker independent systems and utilize training techniques to adapt to the 

speaker to increase their recognition accuracy. 

 

Vocabularies 

Vocabularies (or dictionaries) are lists of words or utterances that can be 

recognized by the SR system. Generally, smaller vocabularies are easier for a computer 

to recognize, while larger vocabularies are more difficult. Unlike normal dictionaries, 

each entry doesn't have to be a single word. They can be as long as a sentence or two. 

Smaller vocabularies can have as few as 1 or 2 recognized utterances (e.g.” Wake Up"), 

while very large vocabularies can have a hundred thousand or more! 

 

Accuracy 

The ability of a recognizer can be examined by measuring its accuracy - or how 

well it recognizes utterances. This includes not only correctly identifying an utterance 

but also identifying if the spoken utterance is not in its vocabulary. Good ASR systems 

have an accuracy of 98% or more! The acceptable accuracy of a system really depends 

on the application. 

 

Training 

Some speech recognizers have the ability to adapt to a speaker. When the 

system has this ability, it may allow training to take place. An ASR system is trained by 

having the speaker repeat standard or common phrases and adjusting its comparison 

algorithms to match that particular speaker. Training a recognizer usually improves its 

accuracy. 

Training can also be used by speakers that have difficulty speaking, or 

pronouncing certain words. As long as the speaker can consistently repeat an utterance, 

ASR systems with training should be able to adapt. 
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2.3 CLASSIFICATION OF ASR SYSTEMS 

A speech recognition system can operate in many different conditions such as 

speaker dependent/independent, isolated/continuous speech recognition, for small/large 

vocabulary. Speech recognition systems can be separated in several different classes by 

describing what types of utterances they have the ability to recognize. These classes are 

based on the fact that one of the difficulties of ASR is the ability to determine when a 

speaker starts and finishes an utterance. Most packages can fit into more than one class, 

depending on which mode they're using. 

 

Isolated Words  

Isolated word recognizers usually require each utterance to have quiet (lack of 

an audio signal) on BOTH sides of the sample window. It doesn't mean that it accepts 

single words, but does require a single utterance at a time. Often, these systems have 

"Listen/Not-Listen" states, where they require the speaker to wait between utterances 

(usually doing processing during the pauses). Isolated Utterance might be a better name 

for this class.  

 

Connected Words   

Connect word systems (or more correctly 'connected utterances') are similar to 

Isolated words, but allow separate utterances to be 'run-together' with a minimal pause 

between them.  

 

Continuous Speech  

Continuous recognition is the next step. Recognizers with continuous speech 

capabilities are some of the most difficult to create because they must utilize special 

methods to determine utterance boundaries. Continuous speech recognizers allow users 

to speak almost naturally, while the computer determines the content. Basically, it's 

computer dictation.  

 

Spontaneous Speech 

There appears to be a variety of definitions for what spontaneous speech 

actually is. At a basic level, it can be thought of as speech that is natural sounding and 

not rehearsed. An ASR system with spontaneous speech ability should be able to 
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handle a variety of natural speech features such as words being run together, "ums" and 

"ahs", and even slight stutters.   

 

Speaker Dependence 

ASR engines can be classified as speaker dependent and speaker independent. 

Speaker Dependent systems are trained with one speaker and recognition is done only 

for that speaker. Speaker Independent systems are trained with one set of speakers. This 

is obviously much more complex than speaker dependent recognition. A problem of 

intermediate complexity would be to train with a group of speakers and recognize 

speech of a speaker within that group. We could call this speaker group dependent 

recognition. 

 

2.4 WHY IS AUTOMATIC SPEECH RECOGNITION HARD? 

There are a few problems in speech recognition that haven‟t yet been 

discovered. However there are a number of problems that have been identified over the 

past few decades most of which still remain unsolved. Some of the main problems in 

ASR are: 

 

Determining word boundaries 

Speech is usually continuous in nature and word boundaries are not clearly 

defined. One of the common errors in continuous speech recognition is the missing out 

of a minuscule gap between words. This happens when the speaker is speaking at a 

high speed. 

 

Varying Accents 

People from different parts of the world pronounce words differently. This leads 

to errors in ASR. However this is one problem that is not restricted to ASR but which 

plagues human listeners too. 

 

Large vocabularies 

When the number of words in the database is large, similar sounding words tend 

to cause a high amount of error i.e. there is a good probability that one word is 

recognized as the other. 
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Changing Room Acoustics 

Noise is a major factor in ASR. In fact it is in noisy conditions or in changing 

room acoustic that the limitations of present day ASR engines become prominent. 

 

Temporal Variance 

Different speakers speak at different speeds. Present day ASR engines just 

cannot adapt to that.  

 

2.5 SPEECH ANALYZER 

Speech analysis, also referred to as front-end analysis or feature extraction, is 

the first step in an automatic speech recognition system. This process aims to extract 

acoustic features from the speech waveform. The output of front-end analysis is a 

compact, efficient set of parameters that represent the acoustic properties observed 

from input speech signals, for subsequent utilization by acoustic modeling. 

There are three major types of front-end processing techniques, namely linear 

predictive coding (LPC), mel-frequency cepstral coefficients (MFCC), and perceptual 

linear prediction (PLP), where the latter two are most commonly used in state-of-the-art 

ASR systems. 

 

Linear predictive coding 

LPC starts with the assumption that a speech signal is produced by a buzzer at 

the end of a tube (voiced sounds), with occasional added hissing and popping sounds. 

Although apparently crude, this model is actually a close approximation to the reality of 

speech production. The glottis (the space between the vocal cords) produces the buzz, 

which is characterized by its intensity (loudness) and frequency (pitch). The vocal tract 

(the throat and mouth) forms the tube, which is characterized by its resonances, which 

are called formants. Hisses and pops are generated by the action of the tongue, lips and 

throat during sibilants and plosives. 

LPC analyzes the speech signal by estimating the formants, removing their 

effects from the speech signal, and estimating the intensity and frequency of the 

remaining buzz. The process of removing the formants is called inverse filtering, and 

the remaining signal after the subtraction of the filtered modeled signal is called the 

residue. 

http://en.wikipedia.org/wiki/Glottis
http://en.wikipedia.org/wiki/Formants
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The numbers which describe the intensity and frequency of the buzz, the 

formants, and the residue signal, can be stored or transmitted somewhere else. LPC 

synthesizes the speech signal by reversing the process: use the buzz parameters and the 

residue to create a source signal, use the formants to create a filter (which represents the 

tube), and run the source through the filter, resulting in speech. 

Because speech signals vary with time, this process is done on short chunks of 

the speech signal, which are called frames; generally 30 to 50 frames per second give 

intelligible speech with good compression. 

 

Mel Frequency Cepstrum Coefficients 

These are derived from a type of cepstral representation of the audio clip (a 

"spectrum-of-a-spectrum"). The difference between the cepstrum and the Mel-

frequency cepstrum is that in the MFC, the frequency bands are positioned 

logarithmically (on the mel scale) which approximates the human auditory system's 

response more closely than the linearly-spaced frequency bands obtained directly from 

the FFT or DCT. This can allow for better processing of data, for example, in audio 

compression. However, unlike the sonogram, MFCCs lack an outer ear model and, 

hence, cannot represent perceived loudness accurately. 

MFCCs are commonly derived as follows: 

        1. Take the Fourier transform of (a windowed excerpt of) a signal  

        2. Map the log amplitudes of the spectrum obtained above onto the Mel scale,    

            using triangular overlapping windows.  

        3. Take the Discrete Cosine Transform of the list of Mel log-amplitudes, as if it       

             were a signal.  

         4. The MFCCs are the amplitudes of the resulting spectrum.  

 

Perceptual Linear Prediction 

Perceptual linear prediction, similar to LPC analysis, is based on the short-term 

spectrum of speech. In contrast to pure linear predictive analysis of speech, perceptual 

linear prediction (PLP) modifies the short-term spectrum of the speech by several 

psychophysically based transformations 

This technique uses
 
three concepts from the psychophysics of hearing to derive 

an
 
estimate of the auditory spectrum:  

(1) The critical-band spectral resolution,
  

http://en.wikipedia.org/wiki/Cepstrum
http://en.wikipedia.org/wiki/Mel_scale
http://en.wikipedia.org/wiki/FFT
http://en.wikipedia.org/wiki/Discrete_cosine_transform
http://en.wikipedia.org/wiki/Audio_compression
http://en.wikipedia.org/wiki/Audio_compression
http://en.wikipedia.org/wiki/Sonogram
http://en.wikipedia.org/wiki/Fourier_transform
http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/Mel_scale
http://en.wikipedia.org/wiki/Discrete_Cosine_Transform
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(2) The equal-loudness curve, and  

(3) The intensity-loudness power law.
  

The auditory spectrum is then approximated by an autoregressive all-pole
 

model. In comparison with conventional linear
 
predictive (LP) analysis, PLP analysis is 

more consistent with human
 
hearing. 

 

2.6 SPEECH CLASSIFIER 

The problem of ASR belongs to a much broader topic in scientific and 

engineering so called pattern recognition. The goal of pattern recognition is to classify 

objects of interest into one of a number of categories or classes. The objects of interest 

are generically called patterns and in our case are sequences of acoustic vectors that are 

extracted from an input speech using the techniques described in the previous section. 

The classes here refer to individual speakers. Since the classification procedure in our 

case is applied on extracted features, it can be also referred to as feature matching.  

The state-of-the-art in feature matching techniques used in speaker recognition 

includes Dynamic Time Warping (DTW), Hidden Markov Modeling (HMM), and 

Vector Quantization (VQ).  

 

Dynamic Time Warping 

Dynamic time warping is an algorithm for measuring similarity between two 

sequences which may vary in time or speed. For instance, similarities in walking 

patterns would be detected, even if in one video the person was walking slowly and if 

in another they were walking more quickly, or even if there were accelerations and 

decelerations during the course of one observation. DTW has been applied to video, 

audio, and graphics -indeed, any data which can be turned into a linear representation 

can be analyzed with DTW. 

A well known application has been automatic speech recognition, to cope with 

different speaking speeds. In general, it is a method that allows a computer to find an 

optimal match between two given sequences (e.g. time series) with certain restrictions, 

i.e. the sequences are "warped" non-linearly to match each other. This sequence 

alignment method is often used in the context of hidden Markov models. 
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Hidden Markov Model 

The basic principle here is to characterize words into probabilistic models 

wherein the various phonemes which contribute to the word represent the states of the 

HMM while the transition probabilities would be the probability of the next phoneme 

being uttered (ideally 1.0). Models for the words which are part of the vocabulary are 

created in the training phase.  

Now, in the recognition phase when the user utters a word it is split up into 

phonemes as done before and it‟s HMM is created. After the utterance of a particular 

phoneme, the most probable phoneme to follow is found from the models which had 

been created by comparing it with the newly formed model. This chain from one 

phoneme to another continues and finally at some point we have the most probable 

word out of the stored words which the user would have uttered and thus recognition is 

brought about in a finite vocabulary system. Such a probabilistic system would be more 

efficient than just cepstral analysis as these is some amount of flexibility in terms of 

how the words are uttered by the users. 

 

Vector Quantization 

VQ is a process of mapping vectors from a large vector space to a finite number 

of regions in that space. Each region is called a cluster and can be represented by its 

center called a centroid. The collection of all codewords is called a codebook.  

Fig 2.2 shows a conceptual diagram to illustrate this recognition process. In the 

figure, only two speakers and two dimensions of the acoustic space are shown. The 

circles refer to the acoustic vectors from the speaker 1 while the triangles are from the 

speaker 2. In the training phase, a speaker-specific VQ codebook is generated for each 

known speaker by clustering his/her training acoustic vectors. The result codewords 

(centroids) are shown in Figure 5 by black circles and black triangles for speaker 1 and 

2, respectively. The distance from a vector to the closest codeword of a codebook is 

called a VQ-distortion. In the recognition phase, an input utterance of an unknown 

voice is “vector-quantized” using each trained codebook and the total VQ distortion is 

computed. The speaker corresponding to the VQ codebook with smallest total 

distortion is identified.  
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Figure 2.2: Conceptual diagram illustrating vector quantization codebook formation. 

 

One speaker can be discriminated from another based of the location of centroids. 
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3. FEATURE EXTRACTION 
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3.1 PREPROCESSING 

Firstly the input speech signal is pre-emphasized to artificially amplify the high 

frequencies. Speech signals are non-stationary signals, meaning to say the transfer 

function of the vocal tract; which generates it, changes with time, though it changes 

gradually. It is safe to assume that it is piecewise stationary. Thus the speech signal is 

framed with 30ms to 32ms frames with an overlap of 20ms. The need for the overlap is 

that information may be lost at the frame boundaries, so frame boundaries need to be 

within another frame. Mathematically, framing is equivalent to multiplying the signal 

with a series of sliding rectangular windows. The problem with rectangular windows is 

that the power contained in the side lobes is significantly high and therefore may give 

rise to spectral leakage. In order to avoid this we use a Hamming window given by. 

 

 

    

3.2 MEL FREQUENCY CEPSTRAL COEFFICIENTS 

MFCCs are typically computed by using a bank of triangular-shaped filters, 

with the center frequency of the filter spaced linearly for frequencies less than 1000 Hz 

and logarithmically above 1000 Hz. The bandwidth of each filter is determined by the 

center frequencies of the two adjacent filters and is dependent on the frequency range 

of the filter bank and number of filters chosen for design. But for the human auditory 

system it is estimated that the filters have a bandwidth that is related to the center 

frequency of the filter. Further it has been shown that there is no evidence of two 

regions (linear and logarithmic) in the experimentally determined Mel frequency scale. 

 

Silence detection 

This is a very important step in any front end speaker recognition system. When 

the user says out any word the system will never have control over the instant the word 

is uttered. It is for this reason that we need a silence detection step which basically 

determines when the user has actually started uttering the word any thereby translates 

the frame of reference to that instant.  
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Windowing 

The next step in the processing is to window each individual frame so as to 

minimize the signal discontinuities at the beginning and end of the frame. The concept 

here is to minimize the spectral distortion by using the window to taper the signal to 

zero at the beginning and end of the frame. If we define the window as,  

 

 

 

  where N is the number of samples in each frame, then the result of windowing is the 

signal  

 

Typically the Hamming window is used, which has the form: 

 

 

 

 Fast Fourier Transform (FFT) 

The next processing step is the Fast Fourier Transform, which converts each 

frame of N samples from the time domain into the frequency domain. The FFT is a fast 

algorithm to implement the Discrete Fourier Transform (DFT) which is defined on the 

set of N samples { Xn }, as follows: 

 

 

 

Note that we use j here to denote the imaginary unit. In general Xn‟s are 

complex numbers. The resulting sequence {Xn} is interpreted as follows: the zero 

frequency corresponds to n = 0, positive frequencies:  0 < f < Fs/2 correspond to values 

1n N/2-1 while negative frequencies –Fs/2 < f < 0 correspond to N/2+1n N-1. 
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Here, Fs  denotes the sampling frequency. The result obtained after this step is often 

referred to as signal‟s spectrum or periodogram. 

 

Mel-frequency Warping 

As mentioned above, psychophysical studies have shown that human perception 

of the frequency contents of sounds for speech signals does not follow a linear scale. 

Thus for each tone with an actual frequency, f, measured in Hz, a subjective pitch is 

measured on a scale called the „mel‟ scale. The mel-frequency scale is a linear 

frequency spacing below 1000 Hz and a logarithmic spacing above 1000 Hz. As a 

reference point, the pitch of a 1 kHz tone, 40 dB above the perceptual hearing 

threshold, is defined as 1000 mels. Therefore we can use the following approximate 

formula to compute the mels for a given frequency f in Hz:               

           

 

 

 One approach to simulating the subjective spectrum is to use a filter bank, one 

filter for each desired mel-frequency component. That filter bank has a triangular 

bandpass frequency response, and the spacing as well as the bandwidth is determined 

by a constant mel-frequency interval. The modified spectrum of S() thus consists of 

the output power of these filters when S() is the input. The number of mel cepstral 

coefficients, K, is typically chosen as 20.  

Note that this filter bank is applied in the frequency domain; therefore it simply 

amounts to taking those triangle-shape windows in the Fig 3.2.1 on the spectrum. A 

useful way of thinking about this mel-warped filter bank is to view each filter as a 

histogram bin (where bins have overlap) in the frequency domain. A useful and 

efficient way of implementing this is to consider these triangular filters in the Mel scale 

where they would in effect be equally spaced filters.  
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Figure 3.2.1: Filter Bank in linear frequency scale 

 

Figure 3.2.2: Filter Bank in Mel frequency scale 

 

Cepstrum 

In this final step, we convert the log mel spectrum back to time. The result is 

called the mel frequency cepstral coefficients (MFCC). The cepstral representation of 

the speech spectrum provides a good representation of the local spectral properties of 

the signal for the given frame analysis. Because the mel spectrum coefficients (and so 

their logarithm) are real numbers, we can convert them to the time domain using the 

Discrete Cosine Transform (DCT). Therefore if we denote those mel power spectrum 

coefficients that are the result of the last step are Sk  , where k =1, 2,…..,K. Calculate 

the MFCC‟s, cn as,                                                                        

 

Note that we exclude the first component c0 from the DCT since it represents 

the mean value of the input signal which carried little speaker specific information. 
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Once we have the MFCCs, these characterize the particular word so during the 

training phase the coefficients for the word are determined and stored. During the 

recognition phase, the coefficients are again determined for the uttered word and 

recognition is carried out by analyzing the MSE with respect to the stored coefficients 

and defining an appropriate threshold depending on the level of security required for 

the application. 

 

3.3 TIME DOMAIN ANALYSIS 

Although speech is non-stationary in a true sense, study has shown that it can be 

assumed to be quasi-stationary i.e. slowly time varying. When examined over a 

sufficiently short period of time (between 20 and 40 msec), its characteristics are fairly 

stationary. The implication of this is that when we consider such small segments of 

speech they have a dominant frequency within the windowed segment. Therefore, this 

can be processed through a short-time frequency analysis. The figure below shows how 

we can use overlapping time domain windows so as to cater for the short time Fourier 

analysis. 

 

 

Figure 3.3: Overlapping windows in time domain 

 

The short-time Fourier transform (STFT) of a speech signal s(t) is given by 

 

 

  

where, w(t) is a window function of duration Tw. In speech processing, the Hamming 

window function is typically used and its width Tw is normally 20 - 40 msec. We can 

decompose S(f, t) as follows: 
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where |S(f, t)| is the short-time magnitude spectrum and ψ(f, t) = S(f, t) is the short-

time phase spectrum. Our project focuses on the short time magnitude spectrum as 

applied to the dominant frequency within each overlapping segment. 

In the STFT-based system, there are a number of design issues that must be 

addressed. First, what type of window function w(t) should be used for computing the 

STFT. A tapered window function (Hamming is usually preferred in speech 

applications) has been used in all studies because with the gradual roll off of such a 

window, the effect of overlap is kept under check to make sure that each window gives 

prominence to an independent segment of speech while maintaining a smooth transition 

from one segment of speech to another. Second, what should be the duration tw. The 

modifier „short-time‟ implies a finite-time window over which the properties of speech 

may be assumed stationary; it does not refer to the actual duration of the window. 

However, it is known that speech basically comprises of phonemes, and experiments 

conducted matched with our inferences that Tw could be between 20 msec to 50 msec.  
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4. ALGORITHMS 
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4.1 MFCC APPROACH: 

 A block diagram of the structure of an MFCC processor is as shown in Fig 

4.1.1. The speech input is typically recorded at a sampling rate above 10000 Hz. This 

sampling frequency was chosen to minimize the effects of aliasing in the analog-to-

digital conversion. These sampled signals can capture all frequencies up to 5 kHz, 

which cover most energy of sounds that are generated by humans. The main purpose of 

the MFCC processor is to mimic the behavior of the human ears. In addition, rather 

than the speech waveforms themselves, MFCC‟s are shown to be less susceptible to 

mentioned variations. 

 

Figure 4.1.1 

 We first stored the speech signal as a 10000 sample vector. It was observed 

from our experiment that the actual uttered speech eliminating the static portions came 

up to about 2500 samples, so, by using a simple threshold technique we carried out the 

silence detection to extract the actual uttered speech.  

It is clear that what we wanted to achieve was a voice based biometric system 

capable of recognizing isolated words. As our experiments revealed almost all the 

isolated words were uttered within 2500 samples. But, when we passed this speech 

signal through a MFCC processor, it spilt this up in the time domain by using 

overlapping windows each with about 250 samples. Thus when we convert this into the 

frequency domain we just have about 250 spectrum values under each window. This 

implied that converting it to the Mel scale would be redundant as the Mel scale is linear 

till 1000 Hz. So, we eliminated the block which did the Mel warping. We directly used 

the overlapping triangular windows in the frequency domain. We obtained the energy 

within each triangular window, followed by the DCT of their logarithms to achieve 

good compaction within a small number of coefficients as described by the MFCC 

approach.  
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This algorithm however, has a drawback. As explained earlier the key to this 

approach is using the energies within each triangular window, however, this may not be 

the best approach as was discovered. It was seen from the experiments that because of 

the prominence given to energy, this approach failed to recognize the same word 

uttered with different energy. Also, as this takes the summation of the energy within 

each triangular window it would essentially give the same value of energy irrespective 

of whether the spectrum peaks at one particular frequency and falls to lower values 

around it or whether it has an equal spread within the window. This is why we decided 

not to go ahead with the implementation of the MFCC approach. 

The simulation was carried out in MATLAB. The various stages of the 

simulation have been represented in the form of the plots shown. The input continuous 

speech signal considered as an example for this project is the word “HELLO”. 
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Figure 4.1.2: The word “Hello” taken for analysis 
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Figure 4.1.3:  The word “Hello” after Silence Detection 
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Figure 4.1.4: The word “Hello” after Windowing using a Hamming Window 
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Figure 4.1.5: The Fourier Transform of the word “Hello” after pre processing 
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Figure 4.1.6: The spectrum of the word “Hello” after Mel – Warping 
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4.2 TIME DOMAIN APPROACH 

The essence of STFT as explained is to extract the frequency spectrum within 

each window in the time domain to analyze the dominating frequencies within each 

window corresponding to various phonemes. In our project, instead of directly applying 

the STFT equation, we have used a hamming window to extract out segments of the 

speech and within each of these segments we used FFT to obtain the desired frequency 

spectrum.  

The plots in Fig 4.2.1 show an example of how overlapping time domain 

hamming windows could be represented. The example considers hamming windows of 

width 500 samples which is about 50 ms and an overlap of 100 samples which would 

be around 10 msec. This has been modified in our project to achieve 25 msec window 

width and an overlap of 10 msec as required.  
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Figure 4.2.1: Plots of overlapping time domain hamming windows 

The system we have simulated and finally implemented can be described using 

the block diagram shown in Fig 4.2.2. 

Figure 4.2.2: Block diagram of the time domain approach 

 

We have considered a single word recognizer in our project and thus we have 

separated out about 2500 samples which represented the speech data. We tested the 

system with many different words and found that almost all the words were uttered 

within 2500 samples as explained earlier. By using a simple threshold algorithm as 

explained in the MFCC approach we separated out the required 2500 speech samples. 

Now, over these samples overlapping hamming windows were used to obtain the 

different segments. The plots below show an example of such windows but the scheme 

of windowing we used for the project consisted of 12 overlapping hamming windows, 

each of duration about 25 msec and an overlap of about 10 msec as required. 
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Once these 12 segments were obtained, we found the spectrum of each segment 

using the standard FFT algorithm. An important observation which helped us take up 

the Time domain approach for our project was the plots of the spectrum. As explained 

earlier, the windowing in time domain helps split the word to its phonemes and bring in 

the quasi – stationary characteristic of speech. This implies that the segments of speech 

under each window would have a particular dominant frequency due to the quasi - 

stationary property. This was clearly observed in all our tests i.e. the spectrum of a 

segment under a window for a particular word would always peak around the same 

frequency. This dominant frequency characteristic was the key to our project.  

The dominant frequencies obtained for each of the 12 windows are stored in the 

training phase. In the testing phase, when the user again utters the word the process is 

repeated and the dominant frequency for each overlapping window is found. This is 

compared with the values stored in the training phase and if there are a certain number 

of close matches, access is granted. If not access is denied.  

There are a number of classifiers which can be used once we have obtained the 

feature vectors i.e. once we have stored the vector during the training phase and we 

obtain a new vector in the testing phase and thus we need a method of classifying this 

as a match or not. Some of the classifiers are as described earlier like GMMs, HMMs. 

The key to this is what is called vector quantization.  

A plot of the extracted speech samples and hence the output of an overlapping 

window showing various stages of the MATLAB simulation is shown below. Fig 4.2.3 

shows the stored speech signal. In this experiment, the word “HELLO” was uttered. In 

Fig 4.2.4, the outcome of separating out the required 2500 speech samples is shown 

followed by, an output of one of the overlapping time domain hamming windows. In 

Fig 4.2.5 and hence in Fig 4.2.6, the effect of dominant frequency is clearly observed.  
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Figure 4.2.3: Input speech “HELLO” 
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Figure 4.2.4: 2500 speech samples extracted 
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Figure 4.2.5: Output of one of the overlapping windows  
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Figure 4.2.6: The frequency spectrum of the windowed signal showing the dominant frequency 

 

As the time domain approach proved to be more effective and appropriate from 

our simulations using MATLAB, we have implemented the time domain approach on 

the DSK. 
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______________________________________________ 

5. HARDWARE IMPLEMENTATION  

ON TMS320C6713 
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5.1 DIGITAL SIGNAL PROCESSORS 

For embedded systems, the cost of speech recognition can be negligible 

comparing to the total system cost for additional speech module to the product. With 

the advances in semiconductor technologies, a number of mainstream Integrated Circuit 

(IC) products which use digital circuit techniques had emerged. The digital revolution 

not only increases circuit robustness, cost efficiency, system integration, and flexibility, 

but also enables a continuous stream of completely new consumer applications, 

increasingly based on embedded (re)programmable processor cores like Digital Signal 

Processors (DSPs), and Field-Programmable Gate Arrays (FPGA) chips and un-

programmable processors like Application-specific ICs There are many principles such 

as flexibility, scalability, reusability, portability and short development times for 

selecting the right hardware for the embedded speech recognition engine.  

The following is the comparison of some alternatives available for digital signal 

processing with DSP, which is the hardware applied in this project: 

 

FPGA  

Field-Programmable Gate Arrays have the capability of being reconfigurable 

within a system, offering reasonably fast time to market. However, FPGAs are 

significantly more expensive and typically have much higher power dissipation than 

DSPs with similar functionality. The ASIC alternative Application-specific ICs be used 

to perform specific functions extremely well, and can be made quite power efficient. 

However, since ASICs are not field reprogrammable, they can not be changed after 

development. Consequently, every new version of the product requires a redesign and 

has to be re-produced. This is a big impediment to rapid time-to-market.  

 

Programmable DSPs 

On the other hand, programmable DSPs can merely change the software program 

without changing the silicon, which greatly reduces the development cost and makes 

aftermarket feature enhancements possible with mere code downloads. Furthermore, 

more often than not, in real time signal processing applications, ASICs are typically 

employed as bus interfaces, glue logic, and functional accelerators for a programmable 

DSP-based system. According to the above description on various popular embedded 
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systems nowadays, the reason of choosing DSP as the hardware platform for our 

research is quite obvious: 

 Single-cycle multiply-accumulate operation 

 Real-time performance, simulation and emulation 

 Flexibility 

 Reliability 

 Increased system performance 

 Reduced system cost. 

Applications of DSP: 

 Classic signal processing: digital filtering, adaptive filtering, FFT, spectrum 

analysis 

 Speech processing: speech coding, speech synthesize, speech recognition,       

speech enhancement, speech mail, speech storage 

 Image processing: image compressing/transferring, image recognition, 

animation, image enhancement 

 Military electronics, Automatic control; Consumer electronics etc.. 

 

  The general-purpose digital signal processor is dominated by applications in 

communications (cellular).Applications embedded digital signal processors are 

dominated by consumer products. They are found in cellular phones, fax/modems, disk 

drives, radio, printers, hearing aids, MP3 players, high-definition television (HDTV), 

digital cameras, and so on. These processors have become the products of choice for a 

number of consumer applications, since they have become very cost-effective. They 

can handle different tasks, since they can be reprogrammed readily for a different 

application. 

DSP techniques have been very successful because of the development of low-cost 

software and hardware support. For example, modems and speech recognition can be 

less expensive using DSP techniques.  

DSP processors are concerned primarily with real-time signal processing. Real-

time processing requires the processing to keep pace with some external event, whereas 

non-real-time processing has no such timing constraint. The external event to keep pace 

with is usually the analog input whereas analog-based systems with discrete electronic 

components such as resistors can be more sensitive to temperature changes, DSP-based 
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systems are less affected by environmental conditions. DSP processors enjoy the 

advantages of microprocessors. They are easy to use, flexible, and economical. 

 

5.2 ARCHITECTURAL DETAILS OF TMS320C6713 

5.2.1 TMS320C6713 Digital Signal Processor 

The TMS320C6713 (C6713) is based on the VelociTI
TM 

, an advanced VLIW* 

architecture (Very Long Instruction Word ), which is very well suited for numerically 

intensive algorithms. The TMS320C6x (C6x) family of processors are like fast special-

purpose microprocessors with a specialized type of architecture and an instruction set 

appropriate for signal processing.  The internal program memory is structured so that a 

total of eight instructions can be fetched every cycle. For example, with a clock rate of 

225MHz, the C6713 is capable of fetching eight 32-bit instructions every 1/ (225 MHz) 

or 4.44 ns. 

  *Very Long Instruction Word or VLIW refers to a CPU architectural 

approach to taking advantage of instruction level parallelism (ILP). A processor that 

executes every instruction one after the other (i.e. a non-pipelined scalar architecture) 

may use processor resources inefficiently, potentially leading to poor performance. The 

performance can be improved by executing different sub-steps of sequential 

instructions simultaneously (this is pipelining), or even executing multiple instructions 

entirely simultaneously as in superscalar architectures. Further improvement can be 

realized by executing instructions in an order different from the order they appear in the 

program; this is called out-of-order execution 

These three techniques all come at a cost: increased hardware complexity. 

Before executing any operations in parallel, the processor must verify that the 

instructions do not have interdependencies. There are many types of interdependencies, 

but a simple example would be a program in which the first instruction's result is used 

as an input for the second instruction. They clearly cannot execute at the same time, 

and the second instruction can't be executed before the first. Modern out-of-order 

processors use significant resources in order to take advantage of these techniques, 

since the scheduling of instructions must be determined dynamically as a program 

executes based on dependencies. 

The VLIW approach, on the other hand, executes operation in parallel based on 

a fixed schedule determined when programs are compiled. Since determining the order 
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of execution of operations (including which operations can execute simultaneously) is 

handled by the compiler, the processor does not need the scheduling hardware that the 

three techniques described above require. As a result, VLIW CPUs offer significant 

computational power with less hardware complexity (but greater compiler complexity) 

than is associated with most superscalar CPUs 

 

5.2.2 Architectural Details of the TMS320C6713 

The features of the TMS320C6713 are  

 Highest-Performance Floating-Point Digital Signal Processor (DSP): C6713  

o Eight 32-Bit Instructions/Cycle 

o 32/64-Bit Data Word 

o 225-, 200-MHz (GDP), and 200-, 167-MHz (PYP) Clock Rates 

o 4.4-, 5-, 6-Instruction Cycle Times 

o 1800/1350, 1600/12 00, and 1336/1000 MIPS /MFLOPS 

o Rich Peripheral Set, Optimized for Audio 

o Highly Optimized C/C++ Compiler 

o Extended Temperature Devices Available 

 Advanced Very Long Instruction Word (VLIW) TMS320C67x™ DSP Core  

o Eight Independent Functional Units:  

 Two ALUs (Fixed-Point) 

 Four ALUs (Floating- and Fixed-Point) 

 Two Multipliers (Floating- and Fixed-Point) 

o Load-Store Architecture With 32 32-Bit General-Purpose Registers 

o Instruction Packing Reduces Code Size 

o All Instructions Conditional 

 Instruction Set Features  

o Native Instructions for IEEE 754  

 Single- and Double-Precision 

o Byte-Addressable (8-, 16-, 32-Bit Data) 

o 8-Bit Overflow Protection 

o Saturation; Bit-Field Extract, Set, Clear; Bit-Counting; Normalization 

 L1/L2 Memory Architecture  

o 4K-Byte L1P Program Cache (Direct-Mapped) 



   

45 

o 4K-Byte L1D Data Cache (2-Way) 

o 256K-Byte L2 Memory Total: 64K-Byte L2 Unified Cache/Mapped 

RAM, and 192K-Byte Additional L2 Mapped RAM 

 Device Configuration  

o Boot Mode: HPI, 8-, 16-, 32-Bit ROM Boot 

o Endianness: Little Endian, Big Endian 

 32-Bit External Memory Interface (EMIF)  

o Glueless Interface to SRAM, EPROM, Flash, SBSRAM, and SDRAM 

o 512M-Byte Total Addressable External Memory Space 

 Enhanced Direct-Memory-Access (EDMA) Controller (16 Independent 

Channels) 

 16-Bit Host-Port Interface (HPI) 

 Two Multichannel Audio Serial Ports (McASPs)  

o Two Independent Clock Zones Each (1 TX and 1 RX) 

o Eight Serial Data Pins Per Port: Individually Assignable to any of the 

Clock Zones 

o Each Clock Zone Includes:  

 Programmable Clock Generator 

 Programmable Frame Sync Generator 

 TDM Streams From 2-32 Time Slots 

 Support for Slot Size: 8, 12, 16, 20, 24, 28, 32 Bits 

 Data Formatter for Bit Manipulation 

o Wide Variety of I2S and Similar Bit Stream Formats 

o Integrated Digital Audio Interface Transmitter (DIT) Supports:  

 S/PDIF, IEC60958-1, AES-3, CP-430 Formats 

 Up to 16 transmit pins 

 Enhanced Channel Status/User Data 

o Extensive Error Checking and Recovery 

 Two Inter-Integrated Circuit Bus (I2C Bus™) Multi-Master and Slave 

Interfaces 

 Two Multichannel Buffered Serial Ports:  

o Serial-Peripheral-Interface (SPI) 

o High-Speed TDM Interface 
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o AC97 Interface 

 Two 32-Bit General-Purpose Timers 

 Dedicated GPIO Module With 16 pins (External Interrupt Capable) 

 Flexible Phase-Locked-Loop (PLL) Based Clock Generator Module 

 IEEE-1149.1 (JTAG) Boundary-Scan-Compatible 

 208-Pin PowerPAD™ Plastic (Low-Profile) Quad Flatpack (PYP) 

 272-BGA Packages (GDP and ZDP) 

 0.13-µm/6-Level Copper Metal Process  

o CMOS Technology 

 3.3-V I/Os, 1.2 V Internal (GDP & PYP) 

 

5.2.3 CPU (DSP core) description 

The TMS320C6713/13B floating-point digital signal processor is based on the 

C67x CPU. The CPU fetches advanced very-long instruction words (VLIW) (256 bits 

wide) to supply up to eight 32-bit instructions to the eight functional units during every 

clock cycle. The VLIW architecture features controls by which all eight units do not 

have to be supplied with instructions if they are not ready to execute. The first bit of 

every 32-bit instruction determines if the next instruction belongs to the same execute 

packet as the previous instruction, or whether it should be executed in the following 

clock as a part of the next execute packet. Fetch packets are always 256 bits wide; 

however, the execute packets can vary in size. The variable-length execute packets are 

a key memory-saving feature, distinguishing the C67x CPU from other VLIW 

architectures. 

The CPU features two sets of functional units. Each set contains four units and a 

register file. One set contains functional units, .L1, .S1, .M1, and .D1; the other set 

contains units .D2, .M2, .S2, and .L2. The two register files each contain 16 32-bit 

registers for a total of 32 general-purpose registers. The two sets of functional units, 

along with two register files, compose sides A and B of the CPU. The four functional 

units on each side of the CPU can freely share the 16 registers belonging to that side. 

Additionally, each side features a single data bus connected to all the registers on the 

other side, by which the two sets of functional units can access data from the register 

files on the opposite side. While register access by functional units on the same side of 
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the CPU as the register file can service all the units in a single clock cycle, register 

access using the register file across the CPU supports one read and one write per cycle. 

Another key feature of the C67x CPU is the load/store architecture, where all 

instructions operate on registers (as opposed to data in memory). Two sets of data-

addressing units (.D1 and .D2) are responsible for all data transfers between the register 

files and the memory. 

 The core of the TMS320C6713 is shown in Fig 5.2.3 

 

Figure 5.2.3: TMS320C6713 core  
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5.3 THE 6713 DSK INTERFACE 

The implementation of signal processing algorithms typically follows the flow 

given below  

Simulation using tools like MATLAB, Octave Lab view 

 

                                                                

Development of a script in C/C++ 

 

 

Use of an Integrated Development Environment (IDE) 

like Code Composer Studio (CCS) to compile and link 

 

                            

 

The assembly code (.asm) for the C code is built using CCS and 

this is downloaded onto the target processor 

 

      DSP Development System 

 

 

Figure 5.3.1: DSP Development System 

The DSP development system shown in Fig 2(a) contains the TMS320C6713 

(C6713) floating-point digital signal processor as well as a 32-bit stereo codec for input 

and output (I/O) support, a universal synchronous bus (USB) cable that connects the 
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DSK board to a PC, 5V power supply for the DSK board and an IBM-compatible PC. 

The DSK board connects to the USB port of the PC through the USB cable included 

with the DSK package. 

 

5.3.1 DSK Development Board 

    

 

Figure 5.3.2: TMS320C6713-based DSK board (Courtesy of Texas Instruments) 

 

The DSK package contains hardware and software support tools for real-time 

signal processing. It is a complete DSP system. The DSK board, with an approximate 

includes the C6713 floating-point digital signal processor and a 32-bit stereo codec 

TLV320AIC23 (AIC23) for input and output. The onboard codec AIC23 [37] uses a 

sigma–delta technology that provides ADC and DAC. It connects to a 12-MHz system 

clock. Variable sampling rates from 8 to96 kHz can be set readily. A daughter card 

expansion is also provided on the DSK board. Two 80-pin connectors provide for 

external peripheral and external memory interfaces. 

The DSK board includes 16MB (megabytes) of synchronous dynamic random 

access memory (SDRAM) and 256kB (kilobytes) of flash memory. Four connectors on 

the board provide input and output: MIC IN for microphone input, LINE IN for line 

input, LINE OUT for line output, and HEADPHONE for a headphone output 

(multiplexed with line output). The status of the four user dip switches on the DSK 
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board can be read from a program and provides the user with a feedback control 

interface. The DSK operates at 225MHz. Also onboard the DSK are voltage regulators 

that provide 1.26 V for the C6713 core and 3.3V for its memory and peripherals. 

 

5.3.2 AIC23 Codec  

                

 

Figure 5.3.3 TMS320C6713 DSK CODEC INTERFACE 

 

The DSK uses a Texas Instruments AIC23 (part no. TLV320AIC23) stereo 

codec for input and output of audio signals. The codec samples analog signals on the 

microphone or line inputs and converts them into digital data so it can be processed by 

the DSP. When the DSP is finished with the data it uses the codec to convert the 

samples back into analog signals on the line and headphone outputs so the user can hear 

the output. The codec communicates using two serial channels- McBSP0 & McBSP1,  

 

 McBSP0 is used  to control the codec‟s internal configuration registers  

The SPI format is used to specify the data ( Top  7 bits to select the 

configuration register and last 9 bits to specify the register contents).This Channel is 

idle when audio data is transmitted. 

 McBSP1 is used to send and receive digital audio samples. 

 Acts as the bi-directional data channel. All audio data flows through the data 

channel. Many data formats are supported based on the three variables of sample width, 
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clock signal source and serial data format. Preferred serial format is DSP mode which 

is designed specifically to operate with the McBSP ports on TI DSPs. 

The codec has a 12 MHz system clock. The 12 MHz system clock corresponds 

to   USB sample rate mode, named because many USB systems use a 12 MHz clock 

and can use the same clock for both the codec and USB controller. The internal sample 

rate generate subdivides the 12 MHz clock to generate common frequencies such as 48 

KHz, 44.1 KHz and 8 KHz. The sample rate is set by the codec‟s SAMPLERATE 

register. 

 

5.3.3 Development Tools  

Code Composer Studio 

CCS provides an IDE to incorporate the software tools. CCS includes tools for 

code generation, such as a C compiler, an assembler, and a linker. It has graphical 

capabilities and supports real-time debugging. It provides an easy-to-use software tool 

to build and debug programs. The C compiler compiles a C source program with 

extension .c to produce an assembly source file with extension.asm. The assembler 

assembles an.asm source file to produce a machine language object file with 

extension.obj.The linker combines object files and object libraries as input to produce 

an executable file with extension. out. This executable file represents a linked common 

object file format (COFF), popular in Unix-based systems and adopted by several 

makers of digital signal processors. This executable file can be loaded and run directly 

on the C6713 processor.  

Real-time analysis can be performed using real-time data exchange (RTDX). 

RTDX allows for data exchange between the host PC and the target DSK, as well as 

analysis in real time without stopping the target. Key statistics and performance can be 

monitored in real time. Through the joint team action group (JTAG), communication 

with on-chip emulation support occurs to control and monitor program execution. The 

C6713 DSK board includes a JTAG interface through the USB port. 

The different files typically encountered in a CCS environment while building 

the system are  

1. file.pjt: to create and build a project named file 

2. file.c: C source program 

3. file.asm: assembly source program created by the user, by the C compiler, or by the    
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    linear optimizer 

4. file.sa: linear assembly source program. The linear optimizer uses file.sa as input to  

    produce an assembly program file.asm 

5. file.h: header support file 

6. file.lib: library file, such as the run-time support library file rts6700.lib 

7. file.cmd: linker command file that maps sections to memory 

8. file.obj: object file created by the assembler 

9. file.out: executable file created by the linker to be loaded and run on the C6713  

    processor 

10. file.cdb: configuration file when using DSP/BIOS 

 

Procedure to work on Code Composer Studio for DSK6713: 

     1. To create New Project 

 Project -> New ( file name eg: test) 

2. To create a source file 

 File -> New -> Type the code (Save and give a file name eg:sum.c) 

3. To add source files to project 

 Project -> Add files to project -> sum.c 

4. To add library files 

 Project -> Add files to project -> dsk6713bsl.lib 

  Note: Library files path - c:\ccstudio\c6000\dsk6713bsl.lib 

  Select Object and Library in Type of files( *.o and *.l files) 

5. To add Configuration Database file 

 File -> New -> DSP/BIOS configuration 

  Select DSK6713.cdb -> Open 

  Save as X.cdb in the project folder (X depends on the the first include 

file    in the main program) 

 Project -> Add files to project -> Add X.cdb from the project folder 

6. To include the files  

 Open c:\ccstudio\c6000\dsk6713\include 

 Copy the files 

  dsk6713.h & 

  dsk6713_aic23.h  into the project folder 

 Project -> Add files to project -> Add the two files just copied  
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7. Project -> Add files to project -> Xcfg.h 

8. To connect  

 Debug -> Connect 

9. To Compile 

 Project -> Compile  

10.To Rebuild  

 Project -> Rebuild 

11.To Load program 

 File -> Load Program -> Select *.out 

12.To Execute the program 

 Build -> Run 

 

 

5.3.4 Memory Map  

The C67xx family of DSPs has a large byte addressable address space. Program 

code and data can be placed anywhere in the unified address space. Addresses are 

always 32-bits wide. The memory map shows the address space of a generic 6713 

processor on the left with specific details of how each region is used on the right. By 

default, the internal memory sits at the beginning of the address space. Portions of the 

internal memory can be reconfigured in software as L2 cache rather than fixed RAM. 

The IRAM memory segment is selected by default. The choice of 

IRAM/SDRAM is left to the programmer and is usually dictated by the storage 

requirements of the application. Real Time applications like Speech Processing, Image 

Processing usually have high storage requirements and hence the space constraints of 

the IRAM necessitate the use of the SDRAM. In our project we have made judicious 

use of IRAM/SDRAM to handle the storage requirements. Typically the parameters 

like Input samples, windowed sample FFT computed values are dumped in the 

SDRAM. A more detailed explanation on the way memory has been handled for our 

application will be explained in the later sections. 
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Figure 5.3.4: Memory Map 
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6. ASR ALGORITHM OPTIMIZATION 
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6.1 INTRODUCTION 

Despite the continual growth of the computing power of DSP, direct 

implementation of ASR algorithms can't over real-time processing. When porting 

speech recognition algorithms to embedded platforms, the essential procedures will be 

included: 

 

 Analyze the algorithm and identify the computationally most critical parts. 

 Simplify the computation by, e.g. using look-up table, avoiding complex 

function, etc. 

 Avoid unnecessarily repetitive computation. 

 Pre-compute frequently used parameters as pre-stored constant values 

whenever possible. 

 Use low-level language if appropriate. 

 

In this work, we have used a set of optimizations for ASR algorithms. By 

analyzing each computation part in ASR, the most effective optimization methods are 

applied. 

 

Feature extraction techniques 

Feature extraction is computationally intensive because it involves many signal 

processing steps such as windowing, Fast Fourier Transform, Mel-scale filter banks, 

Discrete Cosine transform and so on. For each of these steps, different approximation 

techniques have been considered. 

 

Windowing 

In this work, we use the Hamming window .For a frame with fixed-length N, 

the window shape is fixed and it is not needed to calculate the window function h (n) 

for each incoming frame. Instead, h (n) ; 0 <n < N is pre-stored in the RAM. In this 

way, we save N cosine operations, N multiplications and N additions which require a lot 

of CPU cycles. We will need N 16-bit words of RAM to store the window function 

which is not overburden compared to the execution time it costs. 
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FFT Implementation 

Although the Fast Fourier Transform (FFT) is much more efficient than the 

original Discrete Fourier Transform (DFT), it still requires the computation of many 

exponential or trigonometric functions and multiplications that would take a long 

execution time on DSPs. In our work, we have used a 256 point DIF –Radix 2 FFT. 

Since speech is a real-valued signal, each input frame contains 256 real elements .The 

result contains the first half i.e. 128 complex elements as the FFT output. This output 

still provides the full information because an FFT of a real sequence has even 

symmetry around the center or Nyquist point (N/2). 

 

6.2 MEMORY REQUIREMENTS CONSIDERATION 

Embedded DSP system has limited memory resource. For the front-end part, the 

major memory requirement comes from storage of look-up table for DCT and gains of 

filterbanks, and some pre-computed parameters such as the weights of Hamming 

windows, the center frequencies of each filter bank and cepstral weights. 

In our work, memory requirements arose from the fact that the speech samples   

(10000 samples /sec) need to be initially stored, windowed and suitably   processed. 

The default space selected by CCS corresponds to IRAM which doesn‟t satisfy the 

memory storage requirements. So the SDRAM space was made use to store the 

parameters. Suitable heap structures were defined in SDRAM and the parameters 

dumped into these. Typical these included,  

 Input speech samples >SDRAM 

 Hamming window points > Implemented as a lookup table and stored in 

IRAM 

       FFT and Magnitude of FFT > IRAM 

 In this case only the Windowed signal > SDRAM 

 

It is not advisable to evaluate FFT using the twiddle factors and the data in the 

SDRAM, so, we created a buffer space in the IRAM where the input samples were 

fetched from external memory, stored and the FFT was evaluated. This avoids multiple 

external memory accesses and speeds up the process.  
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 The feature vectors evaluated after the training phase would be required for the 

testing phase. It was seen that the data in the IRAM was not overwritten provided we 

declared a proper section for all our required data; so, we stored the feature vector in 

the predefined section in the IRAM thus retaining the data even for the testing phase. 

 

Note: Keep track of the memory segments defined in the C codes at the end of the 

report 
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7. SOURCE CODE 
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7.1 MATLAB CODE 

7.1.1 MFCC Approach 

7.1.1.1 Training Phase 

 
     fs = 10000;               % Sampling Frequency 

t = hamming(4000); % Hamming window to smooth the speech signal 

w = [t ; zeros(6000,1)]; 

f = (1:10000); 

mel(f) = 2595 * log(1 + f / 700); % Linear to Mel frequency scale conversion  

tri = triang(100); 

win1 = [tri ; zeros(9900,1)]; % Defining overlapping triangular windows for  

win2 = [zeros(50,1) ; tri ; zeros(9850,1)]; % frequency domain analysis 

win3 = [zeros(100,1) ; tri ; zeros(9800,1)]; 

win4 = [zeros(150,1) ; tri ; zeros(9750,1)]; 

win5 = [zeros(200,1) ; tri ; zeros(9700,1)]; 

win6 = [zeros(250,1) ; tri ; zeros(9650,1)]; 

win7 = [zeros(300,1) ; tri ; zeros(9600,1)]; 

win8 = [zeros(350,1) ; tri ; zeros(9550,1)]; 

win9 = [zeros(400,1) ; tri ; zeros(9500,1)]; 

win10 = [zeros(450,1) ; tri ; zeros(9450,1)]; 

win11 = [zeros(500,1) ; tri ; zeros(9400,1)]; 

win12 = [zeros(550,1) ; tri ; zeros(9350,1)]; 

win13 = [zeros(600,1) ; tri ; zeros(9300,1)]; 

win14 = [zeros(650,1) ; tri ; zeros(9250,1)]; 

win15 = [zeros(700,1) ; tri ; zeros(9200,1)]; 

win16 = [zeros(750,1) ; tri ; zeros(9150,1)]; 

win17 = [zeros(800,1) ; tri ; zeros(9100,1)]; 

win18 = [zeros(850,1) ; tri ; zeros(9050,1)]; 

win19 = [zeros(900,1) ; tri ; zeros(9000,1)]; 

win20 = [zeros(950,1) ; tri ; zeros(8950,1)]; 

x = wavrecord(1 * fs, fs, 'double'); % Record and store the uttered speech 

plot(x); 

wavplay(x); 

i = 1; 

while abs(x(i)) < 0.05                      % Silence detection 

      i = i + 1; 

end 

x(1 : i) = []; 

x(6000 : 10000) = 0; 

x1 = x. * w; 

mx = fft(x1);                         % Transform to frequency domain 

nx = abs(mx(floor(mel(f)))); % Mel warping 

nx = nx. / max(nx); 

nx1 = nx. * win1; 

nx2 = nx. * win2; 

nx3 = nx. * win3; 

nx4 = nx. * win4; 
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nx5 = nx. * win5; 

nx6 = nx. * win6; 

nx7 = nx. * win7; 

nx8 = nx. * win8; 

nx9 = nx. * win9; 

nx10 = nx. * win10; 

nx11 = nx. * win11; 

nx12 = nx. *win12; 

nx13 = nx. * win13; 

nx14 = nx. * win14; 

nx15 = nx. * win15; 

nx16 = nx. * win16; 

nx17 = nx. * win17; 

nx18 = nx. * win18; 

nx19 = nx. * win19; 

nx20 = nx. * win20; 

sx1 = sum(nx1. ^ 2); % Determine the energy of the signal within each window 

sx2 = sum(nx2. ^ 2); % by summing square of the magnitude of the spectrum 

sx3 = sum(nx3. ^ 2); 

sx4 = sum(nx4. ^ 2); 

sx5 = sum(nx5. ^ 2); 

sx6 = sum(nx6. ^ 2); 

sx7 = sum(nx7. ^ 2); 

sx8 = sum(nx8. ^ 2); 

sx9 = sum(nx9. ^ 2); 

sx10 = sum(nx10. ^ 2); 

sx11 = sum(nx11. ^ 2); 

sx12 = sum(nx12. ^ 2); 

sx13 = sum(nx13. ^ 2); 

sx14 = sum(nx14. ^ 2); 

sx15 = sum(nx15. ^ 2); 

sx16 = sum(nx16. ^ 2); 

sx17 = sum(nx17. ^ 2); 

sx18 = sum(nx18. ^ 2); 

sx19 = sum(nx19. ^ 2); 

sx20 = sum(nx20. ^ 2); 

sx = [sx1, sx2, sx3, sx4, sx5, sx6, sx7, sx8, sx9, sx10, sx11, sx12, sx13, sx14,   

         sx15, sx16, sx17, sx18, sx19, sx20]; 

sx = log(sx);  

dx = dct(sx);                 % Determine DCT of Log of the spectrum energies 

fid = fopen('sample.dat', 'w'); 

fwrite(fid, dx, 'real*8'); % Store this feature vector as a .dat file 

fclose(fid); 
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 7.1.1.2 Testing Phase 

 
fs = 10000;              % Sampling Frequency 

t = hamming(4000); % Hamming window to smooth the speech signal 

w = [t ; zeros(6000,1)]; 

f = (1:10000); 

mel(f) = 2595 * log(1 + f / 700); % Linear to Mel frequency scale conversion  

tri = triang(100); 

win1 = [tri ; zeros(9900,1)]; % Defining overlapping triangular windows for  

win2 = [zeros(50,1) ; tri ; zeros(9850,1)]; % frequency domain analysis 

win3 = [zeros(100,1) ; tri ; zeros(9800,1)]; 

win4 = [zeros(150,1) ; tri ; zeros(9750,1)]; 

win5 = [zeros(200,1) ; tri ; zeros(9700,1)]; 

win6 = [zeros(250,1) ; tri ; zeros(9650,1)]; 

win7 = [zeros(300,1) ; tri ; zeros(9600,1)]; 

win8 = [zeros(350,1) ; tri ; zeros(9550,1)]; 

win9 = [zeros(400,1) ; tri ; zeros(9500,1)]; 

win10 = [zeros(450,1) ; tri ; zeros(9450,1)]; 

win11 = [zeros(500,1) ; tri ; zeros(9400,1)]; 

win12 = [zeros(550,1) ; tri ; zeros(9350,1)]; 

win13 = [zeros(600,1) ; tri ; zeros(9300,1)]; 

win14 = [zeros(650,1) ; tri ; zeros(9250,1)]; 

win15 = [zeros(700,1) ; tri ; zeros(9200,1)]; 

win16 = [zeros(750,1) ; tri ; zeros(9150,1)]; 

win17 = [zeros(800,1) ; tri ; zeros(9100,1)]; 

win18 = [zeros(850,1) ; tri ; zeros(9050,1)]; 

win19 = [zeros(900,1) ; tri ; zeros(9000,1)]; 

win20 = [zeros(950,1) ; tri ; zeros(8950,1)]; 

y = wavrecord(1 * fs, fs, 'double'); %Store the uttered password for authentication 

i = 1; 

while abs(y(i)) < 0.05             % Silence Detection 

     i = i + 1; 

end 

y(1 : i) = []; 

y(6000 : 10000) = 0; 

y1 = y. * w; 

my = fft(y1);                         % Transform to frequency domain 

ny = abs(my(floor(mel(f)))); % Mel warping 

ny = ny. / max(ny); 

ny1 = ny. * win1; 

ny2 = ny. * win2; 

ny3 = ny. * win3; 

ny4 = ny. * win4; 

ny5 = ny. * win5; 

ny6 = ny. * win6; 

ny7 = ny. * win7; 

ny8 = ny. * win8; 

ny9 = ny. * win9; 

ny10 = ny. * win10; 

ny11 = ny. * win11; 
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ny12 = ny. * win12; 

ny13 = ny. * win13; 

ny14 = ny. * win14; 

ny15 = ny. * win15; 

ny16 = ny. * win16; 

ny17 = ny. * win17; 

ny18 = ny. * win18; 

ny19 = ny. * win19; 

ny20 = ny. * win20; 

sy1 = sum(ny1. ^ 2); 

sy2 = sum(ny2. ^ 2); 

sy3 = sum(ny3. ^ 2); 

sy4 = sum(ny4. ^ 2); 

sy5 = sum(ny5. ^ 2); 

sy6 = sum(ny6. ^ 2); 

sy7 = sum(ny7. ^ 2); 

sy8 = sum(ny8. ^ 2); 

sy9 = sum(ny9. ^ 2); 

sy10 = sum(ny10. ^ 2); % Determine the energy of the signal within each window 

sy11 = sum(ny11. ^ 2); % by summing square of the magnitude of the spectrum 

sy12 = sum(ny12. ^ 2); 

sy13 = sum(ny13. ^ 2); 

sy14 = sum(ny14. ^ 2); 

sy15 = sum(ny15. ^ 2); 

sy16 = sum(ny16. ^ 2); 

sy17 = sum(ny17. ^ 2); 

sy18 = sum(ny18. ^ 2); 

sy19 = sum(ny19. ^ 2); 

sy20 = sum(ny20. ^ 2); 

sy = [sy1, sy2, sy3, sy4, sy5, sy6, sy7, sy8, sy9, sy10, sy11, sy12, sy13, sy14,   

         sy15, sy16, sy17, sy18, sy19, sy20]; 

sy = log(sy);  

dy = dct(sy);              % Determine DCT of Log of the spectrum energies 

fid = fopen('sample.dat','r'); 

dx = fread(fid, 20, 'real*8');            % Obtain the feature vector for the password  

fclose(fid);                                       % evaluated in the training phase 

dx = dx.'; 

MSE=(sum((dx - dy). ^ 2)) / 20;     % Determine the Mean squared error  

if MSE<1   

    fprintf('\n\nACCESS GRANTED\n\n'); 

    Grant=wavread('Grant.wav');  % “Access Granted” is output if within threshold  

    wavplay(Grant); 

else 

    fprintf('\n\nACCESS DENIED\n\n'); 

    Deny=wavread('Deny.wav');    % “Access Denied” is output in case of a failure 

    wavplay(Deny); 

end 
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7.1.2 Time Domain Approach 

7.1.2.1 Training Phase 

 
fs = 10000;           % Sampling Frequency 

w = hamming(2500);    % Hamming window to smoothen speech frame 

h = hamming(256);     % Hamming window to find STFT 

win1 = [h ; zeros(2244,1)];   % Twelve windows in Time-domain to compute STFT 

win2 = [zeros(200,1) ; h ; zeros(2044,1)]; 

win3 = [zeros(400,1) ; h ; zeros(1844,1)]; 

win4 = [zeros(600,1) ; h ; zeros(1644,1)]; 

win5 = [zeros(800,1) ; h ; zeros(1444,1)]; 

win6 = [zeros(1000,1) ; h ; zeros(1244,1)]; 

win7 = [zeros(1200,1) ; h ; zeros(1044,1)]; 

win8 = [zeros(1400,1) ; h ; zeros(844,1)]; 

win9 = [zeros(1600,1) ; h ; zeros(644,1)]; 

win10 = [zeros(1800,1) ; h ; zeros(444,1)]; 

win11 = [zeros(2000,1) ; h ; zeros(244,1)]; 

win12 = [zeros(2244,1) ; h]; 

 

fprintf('\nHit enter and store the password'); 

pause; 

x=wavrecord(1 * fs,fs,'double');           % Record Training signal 

figure; plot(x); 

wavplay(x); 

 

%Silence Detection 

i = 1; 

while abs(x(i)) < 0.05             % Detect Speech signal Position                     

     i = i + 1; 

end 

x(1 : i) = []; 

x(6000 : 10000) = 0;                 % Extract Only 2500 samples of Actual Speech 

x(2501 : 10000) = []; 

x1 = x; 

figure; plot(x1); 

nx= x1; 

 

nx1 = nx. * win1;        % Window the Speech Frame with a First Short-time 

Window 

i = 1; 

while abs(nx1(i)) == 0 

     i = i + 1; 

end 

nx1(1 : i) = []; 

nx1(6000 : 10000) = 0; 

nx1(501 : 10000) = []; 

X1 = abs(fft(nx1));               % Finds the position of Dominant Frequency 

Component 
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while X1(i) ~= max(X1) 

     i = i + 1; 

end 

d1 = i 

 

nx2 = nx. * win2;    % Window the Speech Frame with a Second Short-time 

Window 

i = 1; 

while abs(nx2(i)) == 0  

   i = i + 1; 

end 

nx2(1 : i) = []; 

nx2(6000 : 10000) = 0; 

nx2(501 : 10000) = []; 

X2 = abs(fft(nx2));               % Finds the position of Dominant Frequency 

Component 

i = 1; 

while X2(i) ~= max(X2) 

      i = i + 1; 

end 

d2 = i 

 

nx3 = nx. * win3;       % Window the Speech Frame with a Third Short-time 

Window 

i = 1; 

while abs(nx3(i)) == 0 

    i = i + 1; 

end 

nx3(1 : i) = []; 

nx3(6000 : 10000) = 0; 

nx3(501 : 10000) = []; 

X3 = abs(fft(nx3));               % Finds the position of Dominant Frequency 

Component 

i = 1; 

while X3(i) ~= max(X3) 

    i = i + 1; 

end 

d3 = i 

 

nx4 = nx. * win4;     % Window the Speech Frame with a Fourth Short-time 

Window 

i = 1; 

while abs(nx4(i)) == 0 

     i = i + 1; 

end 

nx4(1 : i) = []; 

nx4(6000 : 10000) = 0; 

nx4(501 : 10000) = []; 

X4 = abs(fft(nx4));               % Finds the position of Dominant Frequency 

Component 
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i = 1; 

while X4(i) ~= max(X4) 

     i = i + 1; 

end 

d4 = i 

 

nx5 = nx. * win5;      % Window the Speech Frame with a Fifth Short-time Window 

i = 1; 

while abs(nx5(i)) == 0 

     i = i + 1; 

end 

nx5(1 : i) = []; 

nx5(6000 : 10000) = 0; 

nx5(501 : 10000) = []; 

X5 = abs(fft(nx5));         % Finds the position of Dominant Frequency Component 

i = 1; 

while X5(i ) ~= max(X5) 

     i = i + 1; 

end 

d5 = i 

 

nx6 = nx. * win6;       % Window the Speech Frame with a Sixth Short-time 

Window 

i = 1; 

while abs(nx6(i)) == 0 

     i = i + 1; 

end 

nx6(1 : i) = []; 

nx6(6000 : 10000) = 0; 

nx6(501 : 10000) = []; 

X6 = abs(fft(nx6));               % Finds the position of Dominant Frequency 

Component 

i = 1; 

while X6(i) ~= max(X6) 

     i = i + 1; 

end 

d6 = i 

 

nx7 = nx. * win7; % Window the Speech Frame with a Seventh Short-time Window 

i = 1; 

while abs(nx7(i)) == 0 

     i = i + 1; 

end 

nx7(1 : i) = []; 

nx7(6000 : 10000) = 0; 

nx7(501 : 10000) = []; 

X7 = abs(fft(nx7));               % Finds the position of Dominant Frequency 

Component 

i = 1; 

while X7(i) ~= max(X7) 
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      i  = i  + 1; 

end 

d7 = i 

 

 

nx8 = nx. * win8;   % Window the Speech Frame with a Eighth Short-time Window 

i = 1; 

while abs(nx8(i)) == 0 

      i = i + 1; 

end 

nx8(1 : i) = []; 

nx8(6000 : 10000) = 0; 

nx8(501 : 10000) = []; 

X8 = abs(fft(nx8));               % Finds the position of Dominant Frequency 

Component 

i = 1; 

while X8(i) ~= max(X8) 

      i = i + 1; 

end 

d8 = i 

 

 

nx9 = nx. * win9;   % Window the Speech Frame with a Nineth Short-time Window 

i = 1; 

while abs(nx9(i)) == 0 

     i = i + 1; 

end 

nx9(1 : i) = []; 

nx9(6000 : 10000) = 0; 

nx9(501 : 10000) = []; 

X9 = abs(fft(nx9));            % Finds the position of Dominant Frequency Component 

i = 1; 

while X9(i) ~= max(X9) 

      i = i + 1; 

end 

d9 = i 

 

 

nx10 = nx.*win10;     % Window the Speech Frame with a Tenth Short-time 

Window 

i = 1; 

while abs(nx10(i)) == 0 

      i = i + 1; 

end 

nx10(1 : i) = []; 

nx10(6000 : 10000) = 0; 

nx10(501 : 10000) = []; 

X10 = abs(fft(nx10));        % Finds the position of Dominant Frequency Component 

i = 1; 

while X10(i) ~= max(X10) 
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      i = i + 1; 

end 

d10 = i 

 

 

nx11 = nx. * win11;% Window the Speech Frame with a Eleventh Window 

i = 1; 

while abs(nx11(i)) == 0 

      i = i + 1; 

end 

nx11(1 : i) = []; 

nx11(6000 : 10000) = 0; 

nx11(501 : 10000) = []; 

X11 = abs(fft(nx11));        % Finds the position of Dominant Frequency Component 

i = 1; 

while X11(i) ~= max(X11) 

      i = i + 1; 

end 

d11 = i 

 

 

nx12 = nx. *win12; % Window the Speech Frame with a Twelfth Window 

i = 1; 

while abs(nx12(i)) == 0  

      i = i + 1; 

end 

nx12(1 : i) = []; 

nx12(6000 : 10000) = 0; 

nx12(501 : 10000) = []; 

X12 = abs(fft(nx12));     % Finds the position of Dominant Frequency Component 

i = 1; 

while X12(i) ~= max(X12) 

      i = i + 1; 

end 

d12 = i 

 

 

dx = [d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12]; 

fid = fopen('feature.dat', 'w');       % Save the Feature Vector as a .dat file for      

fwrite(fid, dx, 'real*8');                 % comparison in the testing phase 

fclose(fid); 
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7.1.2.2 Testing Phase 

 
fs = 10000;           % Sampling Frequency 

w = hamming(2500);    % Hamming window to smoothen speech frame 

h = hamming(256);     % Hamming window to find STFT 

win1 = [h ; zeros(2244,1)];   % Twelve windows in Time-domain to compute STFT 

win2 = [zeros(200,1) ; h ; zeros(2044,1)]; 

win3 = [zeros(400,1) ; h ; zeros(1844,1)]; 

win4 = [zeros(600,1) ; h ; zeros(1644,1)]; 

win5 = [zeros(800,1) ; h ; zeros(1444,1)]; 

win6 = [zeros(1000,1) ; h ; zeros(1244,1)]; 

win7 = [zeros(1200,1) ; h ; zeros(1044,1)]; 

win8 = [zeros(1400,1) ; h ; zeros(844,1)]; 

win9 = [zeros(1600,1) ; h ; zeros(644,1)]; 

win10 = [zeros(1800,1) ; h ; zeros(444,1)]; 

win11 = [zeros(2000,1) ; h ; zeros(244,1)]; 

win12 = [zeros(2244,1) ; h]; 

 

fprintf('\nHit enter and store the password'); 

pause; 

x=wavrecord(1 * fs,fs,'double');           % Record Training signal 

figure; plot(x); 

wavplay(x); 

 

%Silence Detection 

i = 1; 

while abs(x(i)) < 0.05             % Detect Speech signal Position                     

     i = i + 1; 

end 

x(1 : i) = []; 

x(6000 : 10000) = 0;                 % Extract Only 2500 samples of Actual Speech 

x(2501 : 10000) = []; 

x1 = x; 

figure; plot(x1); 

nx= x1; 

 

nx1 = nx. * win1;      % Window the Speech Frame with a First Short-time Window 

i = 1; 

while abs(nx1(i)) == 0 

     i = i + 1; 

end 

nx1(1 : i) = []; 

nx1(6000 : 10000) = 0; 

nx1(501 : 10000) = []; 

X1 = abs(fft(nx1));           % Finds the position of Dominant Frequency Component 

while X1(i) ~= max(X1) 

     i = i + 1; 

end 

d1 = i 
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nx2 = nx. * win2;  % Window the Speech Frame with a Second Short-time Window 

i = 1; 

while abs(nx2(i)) == 0  

   i = i + 1; 

end 

nx2(1 : i) = []; 

nx2(6000 : 10000) = 0; 

nx2(501 : 10000) = []; 

X2 = abs(fft(nx2));           % Finds the position of Dominant Frequency Component 

i = 1; 

while X2(i) ~= max(X2) 

      i = i + 1; 

end 

d2 = i 

 

nx3 = nx. * win3;    % Window the Speech Frame with a Third Short-time Window 

i = 1; 

while abs(nx3(i)) == 0 

    i = i + 1; 

end 

nx3(1 : i) = []; 

nx3(6000 : 10000) = 0; 

nx3(501 : 10000) = []; 

X3 = abs(fft(nx3));          % Finds the position of Dominant Frequency Component 

i = 1; 

while X3(i) ~= max(X3) 

    i = i + 1; 

end 

d3 = i 

 

nx4 = nx. * win4;   % Window the Speech Frame with a Fourth Short-time Window 

i = 1; 

while abs(nx4(i)) == 0 

     i = i + 1; 

end 

nx4(1 : i) = []; 

nx4(6000 : 10000) = 0; 

nx4(501 : 10000) = []; 

X4 = abs(fft(nx4));           % Finds the position of Dominant Frequency Component 

i = 1; 

while X4(i) ~= max(X4) 

     i = i + 1; 

end 

d4 = i 

 

nx5 = nx. * win5;     % Window the Speech Frame with a Fifth Short-time Window 

i = 1; 

while abs(nx5(i)) == 0 

     i = i + 1; 

end 
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nx5(1 : i) = []; 

nx5(6000 : 10000) = 0; 

nx5(501 : 10000) = []; 

X5 = abs(fft(nx5));            % Finds the position of Dominant Frequency Component 

i = 1; 

while X5(i ) ~= max(X5) 

     i = i + 1; 

end 

d5 = i 

 

nx6 = nx. * win6;    % Window the Speech Frame with a Sixth Short-time Window 

i = 1; 

while abs(nx6(i)) == 0 

     i = i + 1; 

end 

nx6(1 : i) = []; 

nx6(6000 : 10000) = 0; 

nx6(501 : 10000) = []; 

X6 = abs(fft(nx6));           % Finds the position of Dominant Frequency Component 

i = 1; 

while X6(i) ~= max(X6) 

     i = i + 1; 

end 

d6 = i 

 

nx7 = nx. * win7; % Window the Speech Frame with a Seventh Short-time Window 

i = 1; 

while abs(nx7(i)) == 0 

     i = i + 1; 

end 

nx7(1 : i) = []; 

nx7(6000 : 10000) = 0; 

nx7(501 : 10000) = []; 

X7 = abs(fft(nx7));           % Finds the position of Dominant Frequency Component 

i = 1; 

while X7(i) ~= max(X7) 

      i  = i  + 1; 

end 

d7 = i 

 

nx8 = nx. * win8;   % Window the Speech Frame with a Eighth Short-time Window 

i = 1; 

while abs(nx8(i)) == 0 

      i = i + 1; 

end 

nx8(1 : i) = []; 

nx8(6000 : 10000) = 0; 

nx8(501 : 10000) = []; 

X8 = abs(fft(nx8));          % Finds the position of Dominant Frequency Component 

i = 1; 
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while X8(i) ~= max(X8) 

      i = i + 1; 

end 

d8 = i 

 

nx9 = nx. * win9;   % Window the Speech Frame with a Ninth Short-time Window 

i = 1; 

while abs(nx9(i)) == 0 

     i = i + 1; 

end 

nx9(1 : i) = []; 

nx9(6000 : 10000) = 0; 

nx9(501 : 10000) = []; 

X9 = abs(fft(nx9));           % Finds the position of Dominant Frequency Component 

i = 1; 

while X9(i) ~= max(X9) 

      i = i + 1; 

end 

d9 = i 

 

nx10 = nx.*win10;  % Window the Speech Frame with a Tenth Short-time Window 

i = 1; 

while abs(nx10(i)) == 0 

      i = i + 1; 

end 

nx10(1 : i) = []; 

nx10(6000 : 10000) = 0; 

nx10(501 : 10000) = []; 

X10 = abs(fft(nx10));       % Finds the position of Dominant Frequency Component 

i = 1; 

while X10(i) ~= max(X10) 

      i = i + 1; 

end 

d10 = i 

 

nx11 = nx. * win11;   %Window the Speech Frame with a Eleventh Window 

i = 1; 

while abs(nx11(i)) == 0 

      i = i + 1; 

end 

nx11(1 : i) = []; 

nx11(6000 : 10000) = 0; 

nx11(501 : 10000) = []; 

X11 = abs(fft(nx11));           % Finds the position of Dominant Frequency 

Component 

i = 1; 

while X11(i) ~= max(X11) 

      i = i + 1; 

end 

d11 = i 
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nx12 = nx. *win12; % Window the Speech Frame with a Twelfth Window 

i = 1; 

while abs(nx12(i)) == 0  

      i = i + 1; 

end 

nx12(1 : i) = []; 

nx12(6000 : 10000) = 0; 

nx12(501 : 10000) = []; 

X12 = abs(fft(nx12));       % Finds the position of Dominant Frequency Component 

i = 1; 

while X12(i) ~= max(X12) 

      i = i + 1; 

end 

d12 = i 

 
dy = [d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12]; 

 

fid = fopen('feature.dat', 'r');    %Retrieve the Feature Vector from Training Phase    

dx = fread(fid, 12, 'real*8'); 

fclose(fid); 

dx = dx.'; 

 

i = 1; 

j = 0; 

while(i < 13) 

    if(abs(dy(i) - dx(i)) < 5)   % Check the deviation between dominant  

         j = j + 1;                   % spectral Components in each window 

    end 

i = i + 1; 

end 

if j > 7                                        % Check for desired number of matches  

    fprintf('\n\nACCESS GRANTED\n\n');       

    Grant = wavread('Grant.wav');  % "Access Granted" previously stored as .dat 

    wavplay(Grant); 

else 

    fprintf('\n\nACCESS DENIED\n\n'); 

    Deny = wavread('Deny.wav');  % "Access Denied" previously stored as .dat 

    wavplay(Deny); 

end 
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7.2 C CODE FOR IMPLEMENTATION 

7.2.1 Initialization  

Note: All the initial declaration of the arrays and the various segments in the memory should 

be retained in all the programs. Failing to do so will create overlap in memory resulting in 

loss of important data. 

 
7.2.1.1 Storing the “Access Granted” Signal 

 
/* “Access Granted” was uttered and stored so that in the testing phase when the system 
validates the user it can send out this signal through the speakers */ 

 

#include"dsk6713.h" 

 

#include"dsk6713_aic23.h" 

 

#include"stdio.h" 

 

#include"math.h" 

 

#define FS 10000 

#define PTS 256 

#define PI 3.14159265358979 

 

#pragma DATA_SECTION(spec,".temp") //.temp is a segment defined in IRAM 

#pragma DATA_SECTION(x,".SDRAM$heap") // declaration to store in SDRAM 

#pragma DATA_SECTION(nx1,".SDRAM$heap") 

#pragma DATA_SECTION(nx12,".SDRAM$heap") 

#pragma DATA_SECTION(win,".SDRAM$heap") 

#pragma DATA_SECTION(win1,".SDRAM$heap") 

#pragma DATA_SECTION(win12,".SDRAM$heap") 

#pragma DATA_SECTION(w,".temp") 

#pragma DATA_SECTION(samples,".temp") 

#pragma DATA_SECTION(deny,".new") //.new is a segment in IRAM 

#pragma DATA_SECTION(grant,".new") 

 

typedef struct {float real, imag;} COMPLEX; 

void FFT_init(float *); // Declaration of functions for calculating FFT 

void FFT(COMPLEX *, int ); 

int maxim(float *, int ); // Function to evaluate dominant frequency 

 

float win[256], win1[2500], win12[2500]; // Declaration of all the variables in use 

float x[10000], deny[8000], grant[8000], spec[256]; 

float nx1[2500], nx12[2500]; 

COMPLEX w[PTS]; // Twiddle factors defined as objects of a complex structure 

COMPLEX samples[PTS]; 

 

int i = 0,num = 0, j, temp, N, k, d[12]; 
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/* The following section is the initialization of the codec, the main change which 

was made by us is to make parameter 4 – 0x0015 to enable analog audio path 

control, The first four parameters are varied till the input and output speech is 

clearly audible */ 

 
DSK6713_AIC23_Config config = { \ 

    0x0017,  /* 0 DSK6713_AIC23_LEFTINVOL  Left line input channel volume */ \ 

    0x0017,  /* 1 DSK6713_AIC23_RIGHTINVOL Right line input channel volume */\ 

    0x00e0,  /* 2 DSK6713_AIC23_LEFTHPVOL  Left channel headphone volume */  \ 

    0x00e0,  /* 3 DSK6713_AIC23_RIGHTHPVOL Right channel headphone volume */ \ 

    0x0015,  /* 4 DSK6713_AIC23_ANAPATH    Analog audio path control */      \ 

    0x0000,  /* 5 DSK6713_AIC23_DIGPATH    Digital audio path control */     \ 

    0x0000,  /* 6 DSK6713_AIC23_POWERDOWN  Power down control */             \ 

    0x0043,  /* 7 DSK6713_AIC23_DIGIF      Digital audio interface format */ \ 

    0x0081,  /* 8 DSK6713_AIC23_SAMPLERATE Sample rate control */            \ 

    0x0001   /* 9 DSK6713_AIC23_DIGACT     Digital interface activation */   \ 

}; 

 

void main() 

{ 

    DSK6713_AIC23_CodecHandle hCodec; 

   

    Uint32 l_input, r_input,l_output, r_output; 

     

    int i; 

    /* Initialize the board support library, must be called first */ 

    DSK6713_init(); 

      

    /* Start the codec */ 

    hCodec = DSK6713_AIC23_openCodec(0, &config); 

      

    DSK6713_AIC23_setFreq(hCodec, 1); // Sampling frequency : 1 = 8000 Hz  

     

    for(i = 0 ; i < 8000 ; i++) 

       { /* Read a sample to the left channel */ 

   while (!DSK6713_AIC23_read(hCodec, &l_input)); 

    

   /* Read a sample to the right channel */ 

   while (!DSK6713_AIC23_read(hCodec, &r_input));           

     

     

    grant[i]=l_input; // The uttered signal is sent out through  

    l_output=grant[i]; // the speakers so that the user can hear  

                 r_output=grant[i]; // what is uttered 

        

        

   /* Send a sample to the left channel */ 

            while (!DSK6713_AIC23_write(hCodec, l_output)); 

 

            /* Send a sample to the right channel */ 

            while (!DSK6713_AIC23_write(hCodec, r_output)); 
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        } 

    

    /* Close the codec */ 

    DSK6713_AIC23_closeCodec(hCodec); 

 

 } 
 

 

7.2.1.2 Storing the “Access Denied” Signal 
 
/* “Access Denied” was uttered and stored so that in the testing phase when the system 
validates the user it can send out this signal through the speakers */ 

 

#include"dsk6713.h" 

#include"dsk6713_aic23.h" 

 

#include"stdio.h" 

 

#include"math.h" 

 

#define FS 10000 

#define PTS 256 

#define PI 3.14159265358979 

 

#pragma DATA_SECTION(spec,".temp") //.temp is a segment defined in IRAM 

#pragma DATA_SECTION(x,".SDRAM$heap") // declaration to store in SDRAM 

#pragma DATA_SECTION(nx1,".SDRAM$heap") 

#pragma DATA_SECTION(nx12,".SDRAM$heap") 

#pragma DATA_SECTION(win,".SDRAM$heap") 

#pragma DATA_SECTION(win1,".SDRAM$heap") 

#pragma DATA_SECTION(win12,".SDRAM$heap") 

#pragma DATA_SECTION(w,".temp") 

#pragma DATA_SECTION(samples,".temp") 

#pragma DATA_SECTION(deny,".new") //.new is a segment in IRAM 

#pragma DATA_SECTION(grant,".new") 

 

typedef struct {float real, imag;} COMPLEX; 

void FFT_init(float *); // Declaration of functions for calculating FFT 

void FFT(COMPLEX *, int ); 

int maxim(float *, int ); // Function to evaluate dominant frequency 

 

float win[256], win1[2500], win12[2500]; // Declaration of all the variables in use 

float x[10000], deny[8000], grant[8000], spec[256]; 

float nx1[2500], nx12[2500]; 

COMPLEX w[PTS]; // Twiddle factors defined as objects of a complex structure 

COMPLEX samples[PTS]; 

 

int i = 0,num = 0, j, temp, N, k, d[12]; 

 

/* The following section is the initialization of the codec, the main change which 

was made by us is to make parameter 4 – 0x0015 to enable analog audio path 
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control, The first four parameters are varied till the input and output speech is 

clearly audible */ 

 
DSK6713_AIC23_Config config = { \ 

    0x0017,  /* 0 DSK6713_AIC23_LEFTINVOL  Left line input channel volume */ \ 

    0x0017,  /* 1 DSK6713_AIC23_RIGHTINVOL Right line input channel volume */\ 

    0x00e0,  /* 2 DSK6713_AIC23_LEFTHPVOL  Left channel headphone volume */  \ 

    0x00e0,  /* 3 DSK6713_AIC23_RIGHTHPVOL Right channel headphone volume */ \ 

    0x0015,  /* 4 DSK6713_AIC23_ANAPATH    Analog audio path control */      \ 

    0x0000,  /* 5 DSK6713_AIC23_DIGPATH    Digital audio path control */     \ 

    0x0000,  /* 6 DSK6713_AIC23_POWERDOWN  Power down control */             \ 

    0x0043,  /* 7 DSK6713_AIC23_DIGIF      Digital audio interface format */ \ 

    0x0081,  /* 8 DSK6713_AIC23_SAMPLERATE Sample rate control */            \ 

    0x0001   /* 9 DSK6713_AIC23_DIGACT     Digital interface activation */   \ 

}; 

 

 

void main() 

{ 

    DSK6713_AIC23_CodecHandle hCodec; 

   

    Uint32 l_input, r_input,l_output, r_output; 

     

    int i; 

    /* Initialize the board support library, must be called first */ 

    DSK6713_init(); 

      

    /* Start the codec */ 

    hCodec = DSK6713_AIC23_openCodec(0, &config); 

      

    DSK6713_AIC23_setFreq(hCodec, 1); // Sampling frequency : 1 = 8000 Hz  

     

    for(i = 0 ; i < 8000 ; i++) 

       { /* Read a sample to the left channel */ 

   while (!DSK6713_AIC23_read(hCodec, &l_input)); 

    

   /* Read a sample to the right channel */ 

   while (!DSK6713_AIC23_read(hCodec, &r_input));           

     

     

    deny [i]=l_input; // The uttered signal is sent out through  

    l_output= deny [i]; //the speakers so that the user can hear  

                 r_output= deny [i]; // what is uttered 

        

        

   /* Send a sample to the left channel */ 

            while (!DSK6713_AIC23_write(hCodec, l_output)); 

 

            /* Send a sample to the right channel */ 

            while (!DSK6713_AIC23_write(hCodec, r_output)); 

        } 
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    /* Close the codec */ 

    DSK6713_AIC23_closeCodec(hCodec); 

 

 } 

 

 

7.2.2 Training Phase 

 
#include"spchcfg.h" 

 

#include"dsk6713.h" 

 

#include"dsk6713_aic23.h" 

 

#include"stdio.h" 

 

#include"math.h" 

 

#define FS 10000 

#define PTS 256 

#define PI 3.14159265358979 

 

#pragma DATA_SECTION(x,".SDRAM$heap") // Define all the array pointers 

in #pragma DATA_SECTION(spec,".temp")        // the various segments of 

memory 

#pragma DATA_SECTION(nx1,".SDRAM$heap") 

#pragma DATA_SECTION(nx12,".SDRAM$heap") 

#pragma DATA_SECTION(win,".SDRAM$heap") 

#pragma DATA_SECTION(win1,".SDRAM$heap") 

#pragma DATA_SECTION(win12,".SDRAM$heap") 

#pragma DATA_SECTION(w,".temp")// Define segment .temp in IRAM 

#pragma DATA_SECTION(samples,".temp") 

#pragma DATA_SECTION(deny,".new") // Define segment .new in SDRAM 

#pragma DATA_SECTION(grant,".new") 

 

 

typedef struct {float real, imag;} COMPLEX; 

void FFT_init(float *);// Declaration of functions for calculating FFT 

void FFT(COMPLEX *, int ); 

      int maxim(float *, int ); // Function to evaluate dominant frequency 

 

float win[256], win1[2500], win12[2500]; // Declaration of all the variables in 

use 

float x[10000], spec[256],deny[8000],grant[8000]; 

float nx1[2500],nx12[2500]; 

     COMPLEX w[PTS]; ]; //Twiddle factors defined as objects of a structure 

           COMPLEX samples[PTS]; 

 

int i = 0, j, temp, N, k, d[12]; 
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/* Initialization of the codec*/ 
DSK6713_AIC23_Config config = { \ 

    0x0017,  /* 0 DSK6713_AIC23_LEFTINVOL  Left line input channel volume */ \ 

    0x0017, /* 1 DSK6713_AIC23_RIGHTINVOL Right line input channel volume */\ 

    0x00e0, /* 2 DSK6713_AIC23_LEFTHPVOL  Left channel headphone volume */  \ 

    0x00e0, /* 3 DSK6713_AIC23_RIGHTHPVOL Right channel headphone volume*/  

    0x0015,  /* 4 DSK6713_AIC23_ANAPATH    Analog audio path control */  \ 

    0x0000,  /* 5 DSK6713_AIC23_DIGPATH    Digital audio path control */  \ 

    0x0000,  /* 6 DSK6713_AIC23_POWERDOWN  Power down control */   \ 

    0x0043,  /* 7 DSK6713_AIC23_DIGIF      Digital audio interface format */ \ 

    0x0081,  /* 8 DSK6713_AIC23_SAMPLERATE Sample rate control */   \ 

    0x0001   /* 9 DSK6713_AIC23_DIGACT     Digital interface activation */   \ 

}; 

 

 

void main() 

{ 

    DSK6713_AIC23_CodecHandle hCodec; 

   

    Uint32 l_input, r_input,l_output, r_output; 

  

    int i; 

    /* Initialize the board support library, must be called first */ 

    DSK6713_init(); 

      

    /* Start the codec */ 

    hCodec = DSK6713_AIC23_openCodec(0, &config); 

      

    DSK6713_AIC23_setFreq(hCodec, 1);//sampling frequency = 8000Hz 

    for(i = 0 ; i < 10000 ; i++) 

       {  

                                  /* Read a sample to the left channel */ 

   while (!DSK6713_AIC23_read(hCodec, &l_input)); 

    

   /* Read a sample to the right channel */ 

   while (!DSK6713_AIC23_read(hCodec, &r_input));           

     

     

    x[i]=l_input; 

    l_output=x[i]; 

                 r_output=x[i]; 

        

        

 /* Send a sample to the left channel */ 

            while (!DSK6713_AIC23_write(hCodec, l_output)); 

 

            /* Send a sample to the right channel */ 

            while (!DSK6713_AIC23_write(hCodec, r_output)); 

        } 
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    /* Close the codec */ 

    DSK6713_AIC23_closeCodec(hCodec); 

 

     /* Silence detection to separate out just the speech signals */ 

 i = 0; 

 while(abs(x[i]) < 0.12) 

      i++; 

 temp =  i; 

 for(j = 0 ; j < 10000 - temp ; j++) 

     x[j] = x[i++]; 

 for(j = 10000 - temp ; j < 10000 ; j++) 

     x[j] = 0; 

  

           /* Defining the hamming window */ 

 for(i = 0 ; i < 256 ; i++) 

     win[i] = 0.53836 - 0.46164 * cos((2 * 3.14 * i)/(256)); 

  

 

          hCodec = DSK6713_AIC23_openCodec(0, &config); 

      

         DSK6713_AIC23_setFreq(hCodec, 1); 

     

         /* Output the separated out speech samples to make  

              sure it is stored properly */   

         for(i = 0 ; i < 2500 ; i++) 

         {  

    

  l_output=x[i];   

  r_output=l_output; 

      

     

            /* Send a sample to the left channel */ 

            while (!DSK6713_AIC23_write(hCodec, l_output)); 

 

            /* Send a sample to the right channel */ 

            while (!DSK6713_AIC23_write(hCodec, r_output)); 

        } 

    

       /* Close the codec */ 

       DSK6713_AIC23_closeCodec(hCodec); 

 

       /* Defining the overlapping 256 point hamming windows in time domain */ 

       for(k = 0 ; k < 11 ; k++) 

      {   

    for(j = 0 ; j < (200 * k) ; j++) 

                      win1[j] = 0; 

    for(j = (200 * k) ; j < ((200 * k) + 256) ; j++) 

           win1[j] = win[j - (200 * k)]; 

    for(j = ((200 * k) + 256) ; j < 2500 ; j++) 

           win1[j]=0; 
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         for(i = 0 ; i < 2500 ; i++) 

           nx1[i] = x[i] * win1[i]; 

    i = 0; 

               while(nx1[i] == 0) 

          i++; 

   temp = i; 

   for(j = 0 ; j < 2500 - temp ; j++) 

        nx1[j] = nx1[i++]; 

   for(j = 2500 - temp ; j < 2500 ; j++) 

          nx1[j] = 0; 

   FFT_init(nx1); 

  //find magnitude of fft and put it in the array X 

  //find position of max ampitude in the spectrum 

   d[k] = maxim(spec, 256); 

 

      } 

 for(j = 0 ; j < 2244 ; j++) 

       win12[j]=0; 

 for(j = 2244 ; j < 2500 ; j++) 

                   win12[j] = win[j - 2244]; 

 

    for(i = 0 ; i < 2500;i++) 

                    nx12[i] = x[i] * win12[i]; 

 i = 0; 

 while(nx12[i] == 0) 

     i++; 

 temp =  i; 

 for(j = 0 ; j < 2500 - temp ; j++) 

      nx12[j] = nx12[i++]; 

 for(j = 2500 - temp ; j < 2500 ; j++) 

      nx12[j] = 0; 

 FFT_init(nx12); 

 //find magnitude of fft and put it in the array X 

 //find position of max ampitude in the spectrum 

 d[11] = maxim(spec, 256); 

 

} 

 

/* Function to evaluate the FFT */ 

void FFT_init(float *x1) 

{ 

 for(i = 0 ; i < PTS ; i++) 

 { 

      w[i].real = cos(2 * PI * i / (PTS * 2.0)); // Twiddle factors 

       w[i].imag = -sin(2 * PI * i / (PTS * 2.0)); 

 } 

 for(i = 0 ; i < PTS ; i++) 

 { 

      samples[i].real = 0; 
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      samples[i].imag = 0; 

 } 

 for(i = 0 ; i < PTS ; i++) 

 { 

     samples[i].real = x1[i]; 

 } 

 for(i = 0 ; i < PTS ; i++) 

         samples[i].imag = 0; 

                FFT(samples, PTS); 

 for(i = 0 ; i < PTS ; i++) // Evaluate and store the magnitude of the FFT 

 { 

     spec[i] = sqrt(samples[i].real * samples[i].real + samples[i].imag *       

                              samples[i].imag); 

 } 

return; 

} 

 

void FFT(COMPLEX *Y, int N) 

{ 

    COMPLEX temp1, temp2; 

    int i, j, k; 

    int upper_leg, lower_leg; 

    int leg_diff; 

    int num_stages = 0; 

    int index, step; 

    i = 1; 

   

   do 

   { 

      num_stages += 1; 

      i = i * 2; 

   }while(i != N); 

   leg_diff = N / 2; 

   step = (PTS * 2) / N; 

   for(i = 0; i < num_stages ; i++) 

  { 

      index = 0; 

      for(j = 0 ; j < leg_diff ; j++) 

     { 

         for(upper_leg = j ; upper_leg < N ; upper_leg += (2 * leg_diff)) 

         { 

             lower_leg = upper_leg + leg_diff; 

             temp1.real = (Y[upper_leg]).real + (Y[lower_leg]).real; 

             temp1.imag = (Y[upper_leg]).imag + (Y[lower_leg]).imag; 

             temp2.real = (Y[upper_leg]).real - (Y[lower_leg]).real; 

             temp2.imag = (Y[upper_leg]).imag - (Y[lower_leg]).imag; 

             (Y[lower_leg]).real = temp2.real * (w[index]).real - temp2.imag *           

                                                (w[index]).imag; 

             (Y[lower_leg]).imag = temp2.real * (w[index]).imag + temp2.imag *  

                                                  (w[index]).real; 
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             (Y[upper_leg]).real = temp1.real; 

             (Y[upper_leg]).imag = temp1.imag; 

        } 

   index += step; 

   } 

   leg_diff = leg_diff / 2; 

   step *= 2; 

 } 

 j = 0; 

 for(i = 0 ; i < (N-1) ; i++) 

 { 

     k = N / 2; 

     while(k <= j) 

     { 

         j = j - k; 

         k = k / 2; 

     } 

     j = j + k; 

    

     if(i < j) 

     { 

          temp1.real = (Y[j]).real;   

          temp1.imag = (Y[j]).imag; 

          (Y[j]).real = (Y[i]).real; 

          (Y[j]).imag = (Y[i]).imag; 

          (Y[i]).real = temp1.real; 

          (Y[i]).imag = temp1.imag; 

     } 

 } 

return; 

} 

 

/*Function to evaluate the dominant frequency component in the spectrum */ 

int maxim(float *a, int length) 

{ 

  float temp; 

  int pos; 

  temp = a[1]; 

  pos = 1; 

  for(i = 2 ; i < length / 2 ; i++)  

  { 

    if(temp < a[i]) 

    { 

       temp = a[i]; 

       pos = i; 

    } 

  } 

  return pos; 

} 
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 7.2.3 Testing Phase 

  
#include"spchcfg.h" 

 

#include"dsk6713.h" 

 

#include"dsk6713_aic23.h" 

 

#include"stdio.h" 

 

#include"math.h" 

 

#define FS 10000 

#define PTS 256 

#define PI 3.14159265358979 

 

#pragma DATA_SECTION(x,".SDRAM$heap") // Define all the array pointers  

#pragma DATA_SECTION(spec,".temp")     // in the various memory segments  

#pragma DATA_SECTION(nx1,".SDRAM$heap") 

#pragma DATA_SECTION(nx12,".SDRAM$heap") 

#pragma DATA_SECTION(win,".SDRAM$heap") 

#pragma DATA_SECTION(win1,".SDRAM$heap") 

#pragma DATA_SECTION(win12,".SDRAM$heap") 

#pragma DATA_SECTION(w,".temp")// Define segment .temp in IRAM 

#pragma DATA_SECTION(samples,".temp") 

#pragma DATA_SECTION(deny,".new") // Define segment .new in SDRAM 

#pragma DATA_SECTION(grant,".new") 

 

typedef struct {float real, imag;} COMPLEX; 

void FFT_init(float *);// Declaration of functions for calculating FFT 

void FFT(COMPLEX *, int ); 

      int maxim(float *, int ); // Function to evaluate dominant frequency 

 

float win[256], win1[2500], win12[2500]; // Declaration of all the variables in 

use 

float x[10000], spec[256],deny[8000],grant[8000]; 

float nx1[2500],nx12[2500]; 

     COMPLEX w[PTS]; ]; //Twiddle factors defined as objects of a structure 

           COMPLEX samples[PTS]; 

 

int i = 0,num = 0, j, temp, N, k, d[12], dd[12]; 

int *ptr; 

float *out; 

 

/* Initialization of the codec*/ 
DSK6713_AIC23_Config config = { \ 

    0x0017,  /* 0 DSK6713_AIC23_LEFTINVOL  Left line input channel volume */ \ 

    0x0017,  /* 1 DSK6713_AIC23_RIGHTINVOL Right line input channel volume */\ 

    0x00e0,  /* 2 DSK6713_AIC23_LEFTHPVOL  Left channel headphone volume */  \ 

    0x00e0,  /* 3 DSK6713_AIC23_RIGHTHPVOL Right channel headphone volume*/ 
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    0x0015,  /* 4 DSK6713_AIC23_ANAPATH    Analog audio path control */   \ 

    0x0000,  /* 5 DSK6713_AIC23_DIGPATH    Digital audio path control */   \ 

    0x0000,  /* 6 DSK6713_AIC23_POWERDOWN  Power down control */    \ 

    0x0043,  /* 7 DSK6713_AIC23_DIGIF      Digital audio interface format */ \ 

    0x0081,  /* 8 DSK6713_AIC23_SAMPLERATE Sample rate control */   \ 

    0x0001   /* 9 DSK6713_AIC23_DIGACT     Digital interface activation */   \ 

}; 

 

void main() 

{ 

    DSK6713_AIC23_CodecHandle hCodec; 

   

    Uint32 l_input, r_input,l_output, r_output; 

     

    int i; 

    /* Initialize the board support library, must be called first */ 

    DSK6713_init(); 

      

    /* Start the codec */ 

    hCodec = DSK6713_AIC23_openCodec(0, &config); 

      

    DSK6713_AIC23_setFreq(hCodec, 1); 

    for(i = 0 ; i < 10000 ; i++) 

       { 

               /* Read a sample to the left channel */ 

  while (!DSK6713_AIC23_read(hCodec, &l_input)); 

    

  /* Read a sample to the right channel */ 

  while (!DSK6713_AIC23_read(hCodec, &r_input));           

     

     

   x[i]=l_input; 

   l_output=x[i]; 

                r_output=x[i]; 

        

        

  /* Send a sample to the left channel */ 

                while (!DSK6713_AIC23_write(hCodec, l_output)); 

 

                /* Send a sample to the right channel */ 

             while (!DSK6713_AIC23_write(hCodec, r_output)); 

        } 

    

       /* Close the codec */ 

      DSK6713_AIC23_closeCodec(hCodec); 

 

     /* Silence detection to separate out just the speech signals */ 

 i = 0; 

 while(abs(x[i]) < 0.12) 

      i++; 

 temp =  i; 



   

86 

 for(j = 0 ; j < 10000 - temp ; j++) 

                x[j] = x[i++]; 

 for(j = 10000 - temp ; j < 10000 ; j++) 

     x[j] = 0; 

  

    /* Defining the hamming window */ 

 for(i = 0 ; i < 256 ; i++) 

     win[i] = 0.53836 - 0.46164 * cos((2 * 3.14 * i)/(256)); 

  

 

          hCodec = DSK6713_AIC23_openCodec(0, &config); 

      

          DSK6713_AIC23_setFreq(hCodec, 1); 

     

          /* Output the separated out speech samples to make  

                 sure it is stored properly */   

          for(i = 0 ; i < 2500 ; i++) 

         {  

   

  l_output=x[i];   

  r_output=l_output; 

      

     

              /* Send a sample to the left channel */ 

              while (!DSK6713_AIC23_write(hCodec, l_output)); 

 

              /* Send a sample to the right channel */ 

              while (!DSK6713_AIC23_write(hCodec, r_output)); 

         } 

    

        /* Close the codec */ 

        DSK6713_AIC23_closeCodec(hCodec); 

 

     /* Defining the overlapping 256 point hamming windows in time domain */ 

      for(k = 0 ; k < 11 ; k++) 

     {   

    for(j = 0 ; j < (200 * k) ; j++) 

                      win1[j] = 0; 

    for(j = (200 * k) ; j < ((200 * k) + 256) ; j++) 

           win1[j] = win[j - (200 * k)]; 

    for(j = ((200 * k) + 256) ; j < 2500 ; j++) 

           win1[j]=0; 

   

         for(i = 0 ; i < 2500 ; i++) 

           nx1[i] = x[i] * win1[i]; 

    i = 0; 

               while(nx1[i] == 0) 

          i++; 

   temp = i; 

   for(j = 0 ; j < 2500 - temp ; j++) 
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        nx1[j] = nx1[i++]; 

   for(j = 2500 - temp ; j < 2500 ; j++) 

       nx1[j] = 0; 

   FFT_init(nx1); 

  //find magnitude of fft and put it in the array X 

  //find position of max ampitude in the spectrum 

   d[k] = maxim(spec, 256); 

 

    } 

 for(j = 0 ; j < 2244 ; j++) 

       win12[j]=0; 

 for(j = 2244 ; j < 2500 ; j++) 

                   win12[j] = win[j - 2244]; 

 

    for(i = 0 ; i < 2500;i++) 

                    nx12[i] = x[i] * win12[i]; 

 i = 0; 

 while(nx12[i] == 0) 

     i++; 

 temp =  i; 

 for(j = 0 ; j < 2500 - temp ; j++) 

      nx12[j] = nx12[i++]; 

 for(j = 2500 - temp ; j < 2500 ; j++) 

      nx12[j] = 0; 

 FFT_init(nx12); 

 //find magnitude of fft and put it in the array X 

 //find position of max ampitude in the spectrum 

 d[11] = maxim(spec, 256); 

 

          

            ptr = (int *)0x0002cc04; /* pointer to location where the feature vector    

                                                        from training phase is stored */ 

 for(i = 0 ; i < 12 ; i++) 

 { 

      dd[i] = *ptr++; /* Fetch the feature vector from training and store it*/ 

   

 } 

            for(i=0;i<12;i++) 

            if(abs(d[i] - dd[i]) < 10) // Check the deviation between dominant 

                 num++;                     // frequency within each window 

             if(num>7) 

 { 

      out = (float *)0x00007f00; // Store pointer to memory location where   

 }                                               // the “Access Granted” signal was stored 

 else 

 { 

                 out = (float *)0x00000200; // Store pointer to memory location where   

 }                                               // the “Access Denied” signal was stored 

  

           hCodec = DSK6713_AIC23_openCodec(0, &config); 
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           DSK6713_AIC23_setFreq(hCodec, 1); 

     

            /* Output “Access Granted” or “Access Denied” as an indication of  

                 correct recognition or a failure */ 

           for(i = 0 ; i < 8000 ; i++) 

          {      

    l_output= *(out++); 

                 r_output=l_output; 

        

        

        /* Send a sample to the left channel */ 

                   while (!DSK6713_AIC23_write(hCodec, l_output)); 

 

                    /* Send a sample to the right channel */ 

                   while (!DSK6713_AIC23_write(hCodec, r_output)); 

           } 

    

          /* Close the codec */ 

          DSK6713_AIC23_closeCodec(hCodec);   

 } 

 

/* Function to evaluate the FFT */ 

void FFT_init(float *x1) 

{ 

 for(i = 0 ; i < PTS ; i++) 

 { 

      w[i].real = cos(2 * PI * i / (PTS * 2.0)); 

       w[i].imag = -sin(2 * PI * i / (PTS * 2.0)); 

 } 

 for(i = 0 ; i < PTS ; i++) 

 { 

      samples[i].real = 0; 

      samples[i].imag = 0; 

 } 

 for(i = 0 ; i < PTS ; i++) 

 { 

     samples[i].real = x1[i]; 

 } 

 for(i = 0 ; i < PTS ; i++) 

         samples[i].imag = 0; 

            FFT(samples,PTS); 

 for(i = 0 ; i < PTS ; i++) // Evaluate and store the magnitude of the FFT 

 { 

     spec[i] = sqrt(samples[i].real * samples[i].real + samples[i].imag *       

                              samples[i].imag); 

 } 

return; 

} 
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void FFT(COMPLEX *Y, int N) 

{ 

  COMPLEX temp1, temp2; 

  int i, j, k; 

  int upper_leg, lower_leg; 

  int leg_diff; 

  int num_stages = 0; 

  int index, step; 

  i = 1; 

   

  do 

  { 

      num_stages += 1; 

      i = i * 2; 

  }while(i != N); 

  leg_diff = N / 2; 

  step = (PTS * 2) / N; 

  for(i = 0; i < num_stages ; i++) 

  { 

      index = 0; 

      for(j = 0 ; j < leg_diff ; j++) 

     { 

         for(upper_leg = j ; upper_leg < N ; upper_leg += (2 * leg_diff)) 

         { 

             lower_leg = upper_leg + leg_diff; 

             temp1.real = (Y[upper_leg]).real + (Y[lower_leg]).real; 

             temp1.imag = (Y[upper_leg]).imag + (Y[lower_leg]).imag; 

             temp2.real = (Y[upper_leg]).real - (Y[lower_leg]).real; 

             temp2.imag = (Y[upper_leg]).imag - (Y[lower_leg]).imag; 

             (Y[lower_leg]).real = temp2.real * (w[index]).real - temp2.imag *                      

                                                (w[index]).imag; 

             (Y[lower_leg]).imag = temp2.real * (w[index]).imag + temp2.imag *  

                                                  (w[index]).real; 

             (Y[upper_leg]).real = temp1.real; 

             (Y[upper_leg]).imag = temp1.imag; 

        } 

   index += step; 

   } 

   leg_diff = leg_diff / 2; 

   step *= 2; 

 } 

 j = 0; 

 for(i = 0 ; i < (N-1) ; i++) 

 { 

     k = N / 2; 

     while(k <= j) 

     { 

         j = j - k; 

         k = k / 2; 

     } 
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     j = j + k; 

    

     if(i < j) 

     { 

          temp1.real = (Y[j]).real;   

          temp1.imag = (Y[j]).imag; 

          (Y[j]).real = (Y[i]).real; 

          (Y[j]).imag = (Y[i]).imag; 

          (Y[i]).real = temp1.real; 

          (Y[i]).imag = temp1.imag; 

     } 

 } 

return; 

} 

 

/*Function to evaluate the dominant frequency component in the spectrum */ 

int maxim(float *a, int length) 

{ 

  float temp; 

  int pos; 

  temp = a[1]; 

  pos = 1; 

  for(i = 2 ; i < length / 2 ; i++)  

  { 

    if(temp < a[i]) 

    { 

       temp = a[i]; 

       pos = i; 

    } 

  } 

  return pos; 

} 
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8.1 OVERVIEW 

This project basically involved carrying out a research on the existing 

techniques of isolated word recognition, simulating the work using the available tools 

like MATLAB and finally carrying out the implementation on the TMS320C6713 DSP 

platform. The experiments were carried out by taking real time data from a microphone 

making the ASR system Real Time. The results have been quantified by carrying out 

the experiments under varying conditions and multitude of speakers, male/female. 

 An interesting aspect which came out of the experiments was that the MFCC 

approach failed to give favorable results with respect to a few test cases where the 

differing phenomes were very few as the difference in energy between two such words 

(“h-ello” and “f-ellow”) showed couldn‟t be caught as the energy levels associated with 

the reminder of the phenomes constituting the word tend to average out the difference. 

The Time domain approach in our case proved to be more trustworthy. The 

implementation on the TMS320C6713 platform also threw up a number of challenges 

like making the algorithms compliant for an efficient implementation on the DSP with 

respect to aspects like instruction execution efficiency, Memory usage and we were 

able to incorporate some aspects which would help achieve this. The results proved to 

be quite satisfactory considering the amount of storage requirement needed. Hence, the 

basic aim towards which our research was directed i.e. designing a Real Time ASR 

system was primarily met but the prospect of making it robust always remains. The 

constraints before us made us leave this aspect for the future researchers. 

When the robustness of a speech recognition system is under question, we need 

to realize that such a system it has got a few disadvantages. On one hand the human 

voice is not invariant in time therefore the biometric template must be adapted during 

progressing time. The human voice is also variable through temporal variations of the 

voice, caused by a cold, hoarseness, stress, emotional different states or puberty vocal 

change. On the other hand voice recognition systems have got a higher error rate 

compared to fingerprint recognition systems, because the human voice is not as 

“unique” as fingerprints. For the computation of the Fast Fourier Transformation the 

systems needs to have a co-processor and more processing power than for e.g 

fingerprint matching. Therefore speaker verification systems are not suitable for mobile 

applications / battery powered systems in the current state. 
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8.2 COMPARISON 

We successfully simulated the MFCC approach and the Time domain approach 

using MATLAB. We concluded from our experiments that for an isolated word 

recognition system like the one we aimed to implement in our project, the time domain 

approach proved to be more effective. The reason for this is that, the MFCC approach 

has a drawback. As explained earlier the key to this approach is using the energies, 

however, this may not be the best approach as was discovered. 

 It was seen from the experiments that because of the prominence given to 

energy, this approach failed to recognize the same word uttered with different energy. 

Also, as this takes the summation of the energy within each triangular window it would 

essentially give the same value of energy irrespective of whether the spectrum peaks at 

one particular frequency and falls to lower values around it or whether it has an equal 

spread within the window. 

However, as the time domain approach is not based on energy but purely based 

on the dominant frequencies within small segments of speech, it makes good use of the 

quasi – stationary property of speech. We thus concluded from our simulation results 

that the time domain approach is more suitable for the isolated work recognizer 

required for a voice based biometric system. A comparison between the algorithms we 

simulated is given in the tables below. Based on this conclusion, we decided to 

implement the time domain approach on the DSK.  

 

MFCC Approach: 

 The following test results were obtained by simulating the MFCC based 

recognition approach on MATLAB. The entries indicate the MSE obtained for four 

users who tested the System. A threshold MSE of 1 was set for this experiment. 

 

Diwakar Adarsh 

 

Deepak 

 
Karthik 

1.0859 0.3507 0.8546 0.9821 

0.3354 0.3983 0.6148 1.7451 

0.3288 0.4055 0.3465 0.8956 

0.8407 0.3018 2.0014 0.7998 

0.4480 0.2232 0.4269 0.9324 
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0.5672 1.4045 0.3458 1.6542 

0.4181 0.3946 0.5982 0.5421 

0.5288 0.7628 0.3991 0.9654 

1.6195 0.5548 0.4651 0.6495 

0.4471 0.4912 0.8651 0.5981 

0.4887 0.6149 0.4438 0.8495 

0.3610 0.3674 0.3215 0.2136 

0.9020 0.6713 1.3201 0.9101 

0.3661 0.2025 0.5231 0.2631 

0.5645 0.3948 0.6723 0.6498 

0.4213 0.4532 0.2132 2.2651 

0.4656 1.2063 0.3135 0.4561 

0.3263 0.2123 0.4136 0.6462 

0.9262 0.5631 1.7512 0.7412 

0.6298 0.3516 0.3212 0.6521 

 

Time Domain Approach: 

 The following test results were obtained by simulating the Time Domain based 

recognition approach on MATLAB. The entries indicate the number of dominant 

frequency matches obtained for four users who tested the System. A threshold of 8 

matches was set for this experiment. 

 

Diwakar Adarsh 

 

Deepak 

 
Karthik 

11 10 10 11 

11 12 10 8 

8 9 9 10 

10 11 11 10 

12 7 9 9 

9 10 6 5 

10 8 9 11 

8 11 10 12 

12 12 10 11 
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9 9 11 9 

11 8 7 10 

6 10 8 9 

11 11 10 7 

10 10 12 9 

11 12 11 12 

10 8 9 11 

8 11 10 10 

12 12 12 11 

10 9 11 9 

11 8 9 10 

 

Results of the simulation: 

 The following table shows the percentage successful speaker recognition for 

both the algorithms. 

 

 

 

 

 

 

 

 

 

 

 Adarsh Deepak Diwakar Karthik 

MFCC 

Approach 
90% 85% 90% 85% 

Time Domain 

Approach 
95% 90% 95% 90% 
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______________________________________________ 

9. APPLICATIONS 
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After nearly sixty years of research, speech recognition technology has reached 

a relatively high level. However, most state-of-the-art ASR systems run on desktop 

with powerful microprocessors, ample memory and an ever-present power supply. In 

these years, with the rapid evolvement of hardware and software technologies, ASR has 

become more and more expedient as an alternative human-to-machine interface that is 

needed for the following application areas: 

 

 Stand-alone consumer devices such as wrist watch, toys and hands-free 

mobile phone in car where people are unable to use other interfaces or big 

input platforms like keyboards are not available. 

 

 Single purpose command and control system such as voice dialing for 

cellular, home, and office phones where multi-function computers (PCs) are 

redundant. 

          

Some of the applications of speaker verification systems are: 

 

  Time and Attendance Systems 

  Access Control Systems 

  Telephone-Banking/Broking 

  Biometric Login to telephone aided shopping systems 

  Information and Reservation Services 

  Security control for confidential information 

  Forensic purposes    

 

Voice based Telephone dialing is one of the applications we simulated. The key 

focus of this application is to aid the physically challenged in executing a mundane task 

like telephone dialing. Here the user initially trains the system by uttering the digits 

from 0 to 9. Once the system has been trained, the system can recognize the digits 

uttered by the user who trained the system. This system can also add some inherent 

security as the system based on cepstral approach is speaker dependent.  The algorithm 

is run on a particular speaker and the MFCC coefficients determined. Now the 

algorithm is applied to a different speaker and the mismatch was clearly observed. Thus 

the inherent security provided by the system was confirmed.  
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             Presently systems have also been designed which incorporate Speech and 

Speaker Recognition. Typically a user has two levels of check. He/She has to initially 

speak the right password to gain access to a system. The system not only verifies if the 

correct password has been said but also focused on the authenticity of the speaker. The 

ultimate goal is do have a system which does a Speech, Iris, Fingerprint Recognition to 

implement access control. 
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______________________________________________ 

10. SCOPE FOR FUTURE WORK 
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This project focused on “Isolated Word Recognition”. But we feel the idea can 

be extended to “Continuous Word Recognition” and ultimately create a Language 

Independent Recognition System based on algorithms which make these systems 

robust. The use of Statistical Models like HMMs, GMMs or learning models like 

Neural Networks and other associated aspects of Artificial Intelligence can also be 

incorporated in this direction to improve upon the present project. This would make the 

system much tolerant to variations like accent and extraneous conditions like noise and 

associated residues and hence make it less error prone. Some other aspects which can 

be looked into are:     

 The end-point detection used in this work is only based on the frame energy which 

is not good for a noisy environment with low SNR. The error rate of determining 

the beginning and ending of speech segments will greatly increase which directly 

influence the recognition performance at the pattern recognition part. So, we should 

try to use some effective way to do end-point detection. One of these methods could 

be to use the statistical way to find a distribution which can separate the noise and 

speech from each other. 

 The size of the training data i.e. the code book can be increased as it is clearly 

proven that the greater the size of the training data, the greater the recognition 

accuracy. This training data could incorporate aspects like the different ways viz the 

accents in which a word can be spoken, the same words spoken by male/female 

speakers and the word being spoken under different conditions say under conditions 

in which the speaker may have a sore throat etc. 

 Although some methods have been proposed and used with respect the handling of 

the input and the processed samples, there maybe some other optimizations that we 

can apply before finally storing it in the available memory. 

 The present work has been implemented on the TMS320C6713 platform which is a 

floating point DSP. The case where a fixed point implementation on a DSP (with     

suitable word size which maintains accuracy without causing truncation errors) is 

done will have to be studied and a comparison carried out so as to make a choice on 

the DSP to be used for such applications. This is necessary as Embedded Systems 

have “Response Time” requirements as one of their essential criteria. 
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