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ABSTRACT

In this paper, we propose to use 3D information to augment
the Markov random field (MRF) model for object recogni-
tion. Conventional MRF for image-based object recognition
usually uses appearance and 2D location as features in the
model. The problem is solved by finding the globally optimal
assignment that minimizes an energy defined in MRF. We es-
timate rough 3D information from stereo image pairs, and in-
corporate such information into node and edge potential mod-
els in the conventional MRF. Introducing 3D location into the
node potential can take advantage of the 3D location distribu-
tion statistics of different classes. Considering 3D distance in
the edge potential can help distinguish “true” neighbors from
“fake” neighbors in 2D. Experiments show improved recog-
nition results by using the proposed technique.

Index Terms— object recognition, Markov random field,
3D, stereo

1. INTRODUCTION

MRF is widely used in many vision applications like seg-
mentation and object recognition. It offers a mathematical
framework to model contextual relationship of pieces of lo-
cal information. A typical application of MRF is to recognize
object categories of each pixel(or superpixel) in an image.In
training procedure, feature distribution statistics of each ob-
ject category is collected based on training samples; in test-
ing procedure, assignment of class labels depends on each
pixel’s similarity to training samples and interaction among
neighboring pixels. Optimal class assignment is solved by
minimizing a target energy function.

Related work. MRF is used for interactive segmentation
to partition an image into two classes: foreground and back-
ground [1]. In their papaer, 2D knowledge (texture, edges,
object boundary) is explored, but no 3D information. 3D ob-
ject recognition has also been studied. Brostow et al. show
motion and structure can boost recognition performance [2].
They use randomized decision forests classifier, which does
not model contextual relationship of pixels. Kushal et al.
investigate 3D object recognition [3], focusing on recogniz-
ing one 3D object from arbitrary view point and 3D geome-
try modeling. Our work don’t rely on precise 3D geometry
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Fig. 1. A synthesized example showing the advantage of us-
ing 3D location. First, 2D location distribution of two classes
may overlap with each other (2D ellipses), while additional
depth information may help distinguish two classes (3D el-
lipses). Second, neighboring pixels in 2D may be far apart in
3D (so-called “fake” neighbors), which can be distinguished
from “true” neighbors in 3D by measuring 3D distance.

reconstruction, and shape variation within one class can be
large.

Proposed method.The primary contribution of our paper
is to incorporate 3D information into the MRF framework for
object classification. How 3D can help improving the classifi-
cation performance in MRF? Fig. 1 uses a simple synthesized
example to illustrate the motivation. Assuming we have a lot
of images taken at different places at different time in similar
environment (e.g. driving environment). We want to classify
every pixel in the image to be one of the two classes. Assum-
ing objects from class 1 (•) tend to be closer to camera than
objects in class 0 (�) (e.g. when class 0 is building along the
sidewalk, and class 1 is vehicle). If we use a Gaussian model
to capture the 2D location distribution of each class, Gaussian
distributions of two classes (2D ellipses) may well overlap
with each other, making it difficult to distinguish class label
from 2D location. However, Gaussian distributions of 3D lo-
cation of two classes (3D ellipses) are well separated, thusin-
formative of the class label. MRF can easily takes advantage
of 3D location distribution by incorporating the distribution
statistics into thenode potential. Another way MRF can uti-
lize 3D information is to estimate real distance of neighboring
pixels. If two pixels are neighbors in 2D image, they are more
likely to be assigned the same class label in MRF. However,
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Fig. 2. (a) camera setup and camera coordinates (b) corre-
spondences in rectified stereo image pair (c) segmentation of
image into superpixels (d) disparity map (e) computing 3D
distance of two superpixels.

neighbors in 2D may come from different classes and be far
apart in 3D space. We call those neighbors as “fake” neigh-
bors, compared to “true” neighbors in 3D space, as shown in
Fig. 1. By incorporating 3D distance into theedge potential,
MRF is able to discern “fake” and “true” neighbors.

Synopsis.In Section 2, we explain details of the proposed
method, including estimation of 3D from stereo, a brief re-
view of basic MRF and 3D extensions. Section 3 shows qual-
itative and quantitative results. Section 4 concludes.

2. 3D EXTENSION OF MRF BASED ALGORITHM

2.1. Estimating 3D from Stereo

We use stereo image pairs captured by Point Grey Bumblebee
BBX3-13S2C camera to estimate the disparity map. Images
are rectified and scaled to size320 × 240 before processing.
Correspondences lie on the same row of rectified images (Fig.
2(b)). Disparity is the horizontal displacement of correspon-
dence. We use the camera coordinates system, where the ori-
gin is the camera center and XY plane is fixed to the image
plane as shown in Fig. 2(a).

3D coordinates(X,Y, Z) can be computed from 2D im-
age coordinates(x, y) and disparityd using [X,Y, Z] =
[xB/d, yBfx/(dfy), Bfx/d]. fx, fy (focal length) andB
(baseline) are parameters specified by the BBX3 camera.

We adopt a similar approach to [4] to design the stereo al-
gorithm. It gives satisfying disparity estimates for the outdoor
driving dataset. The right view is divided into segments show-
ing local appearance homogeneity using mean shift segmen-
tation (Fig. 2(c)) [5]. These segments are usually referredto
as superpixels. Assuming all pixels in each superpixel come
from the same planeΠ in 3D (Π1X + Π2Y + Π3Z = 1),
thus the disparity satisfyd = ax + by + c [4]. The task is to
find the best(a, b, c) (termed as warping parameters) for all

superpixels. This is done in two steps. First, the best warping
parameter for each superpixel is estimated using optical flow
algorithm. Second, all found warping parameters are shared
among all superpixels, and MRF is applied to find globally
optimal solution. Fig. 2(d) shows the final disparity map.
Any other stereo algorithm producing good disparity estimate
can be used to replace this algorithm.

The 3D plane parameterΠ = [Π1,Π2,Π3] is given by
Π = [a/B, bfy/(Bfx), c/(Bfx)]. We can compute 3D loca-
tion of any pixel using its 2D coordinates and 3D plane pa-
rameterΠ. In section 2.4, we will compute 3D distance of
neighboring superpixels. The distance is defined as the aver-
age distance of projecting the center of one superpixel to the
plane of the other superpixel, as illustrated in Fig. 2(e).

2.2. Baseline: MRF based Algorithm

In the MRF based algorithm, the image is modeled as a
Markov random field. Each nodexi represents the class of a
pixel (or superpixel), and neighboring pixels (or superpixels)
are connected via edges. Assuming there areC object classes,
and our goal is to inference the class labelc ∈ {1, 2, ..., C}
for each pixel. We choose the superpixel representation, be-
cause its computational complexity is much less than that of
the pixel representation. Each node emits an observationyi,
which is the appearance feature represented by mean Luv
color of the superpixel. The model is illustrated in Fig. 3.

The joint probability of superpixel class and appearance
over the entire image is given in Eq.(1):

P(X ,Y) ∝
∏

i

φi(xi)
∏

i,j∈E

ψij(xi, xj) (1)

φi(xi = c) = P(yi|GMMcolor(c)) (2)

ψ(xi, xj) = e−βI(xi 6=xj) (3)

In Eq.(1), φ represents the node-potential andψ repre-
sents the edge potential.φi(xi) captures the correlation be-
tween the appearance and class label, indicating the likeli-
hood ofxi coming from classc based on color ofxi and color
distribution of classc. Node potentials can be learned from
the training data. In Eq.(2),GMMcolor(c) is a Gaussian mix-
ture model (GMM) learnt for classc. In Eq.(3),ψ is simply
the Potts model, which biases neighboring nodes to have the
same class label.I(xi 6= xj) is the identity indication func-
tion, which equals 1 whenxi 6= xj and equals 0 otherwise.β
controls the strength of such bias:β = 0 means no interac-
tion among neighbors and class label is decided byφi locally;
largeβ puts high penalty when neighbors are assigned differ-
ent class labels, thus encouraging homogenous label assign-
ments in the image as a whole. Approximate MAP (maximum
a posteriori) solution to the MRF can be inferred by Loopy
belief propagation (LoopyBP) [6], which maximizes the joint
probabilityP(X ,Y). The inference engine will output for
each node a vector of sizeC × 1, representing the belief of
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Fig. 3. MRF model: each nodexi represents a superpixel,
each edge corresponds to two neighboring superpixels. The
node potentialφi(xi) captures the correlation between a su-
perpixel’s class label and its appearance. The edge poten-
tial ψij(xi, xj) is simply the Potts model, penalizing different
label assignments to neighboring nodes.yi nodes represent
appearance feature (color).di nodes represent 3D location,
which don’t exist in conventional MRF.

this node coming from each class. Optimal class labelxi is
simply the classc with the largest belief.

2.3. Incorporating 3D in MRF Node Potential

Now we extend a node to emit two observations,yi anddi,
representing appearance and 3D location (Fig. 3). This leads
to the addition of another node potential,ζ, which captures
the correlation between the class label and 3D location of the
superpixel center.ζ can be learned in a manner analogous to
the one used for learningφ in the previous section (Eq.(4)).
Here we assume color featureyi and location featuredi are
independent features given class labelxi. This assumption
of independent features is similar to Naive Bayes classifier.
It reduces model complexity and makes the model robust in
case of limited training samples. Eq.(5) shows corresponding
change in the joint probabilityP (the change is highlighted in
red).

ζi(xi = c) = P(di|GMM3DLoc(c)) (4)

P(X ,Y,D) ∝
∏

i

φi(xi)
∏

i

ζi(xi)
∏

i,j∈E

ψij(xi, xj) (5)

In Eq.(5),φ andζ are required to be learnt only once, and
thus can be lumped together into a single node potential, thus
allowing to reuse the machinery of the original MRF frame-
work. Addingζ does not add to complexity of inference, be-
cause node potentials are pre-computed once before feeding
into the inference engine.

2.4. Incorporating 3D in MRF Edge Potential

Now we modify the edge potentialψ to consider 3D distance
of two neighboring nodes. In Potts model, the same penaltyβ
is exerted if two neighboring superpixels in 2D are assigned

different class labels. To justify the fact that “fake” neigh-
bors in 2D which are actually far apart in 3D are less likely
to come from the same class than “true” neighbors, the edge
potential is modified to reflect the 3D distance of neighboring
superpixels, as shown in Eq.(6) (the change is highlighted in
red).

ψij(xi, xj) = e−(β·closeness(xi,xj))·I(xi 6=xj) (6)

closeness(xi, xj) = e−Dist(xi,xj) (7)

The termcloseness(xi, xj) computed from Eq.(7) is in
between 0 and 1. Effectiveβ (penalty of assigning differ-
ent class labels toxi, xj) in the edge potentialψij becomes
β· closeness(xi, xj), putting higher penalty whenxi and
xj are close and lower penalty when they are far apart.
Dist(xi, xj) in Eq.(7) is the 3D distance of superpixelxi

andxj , computed as described in section 2.1.
Changing representation of edge potentialψ does not add

to the complexity of solving the energy-minimization prob-
lem in LoopyBP, becauseψij(xi, xj) of all edges are pre-
computed before feeding into the inference engine.

3. EXPERIMENTAL RESULTS

Dataset. Our testing dataset includes randomly sampled 50
images from a 60 minutes’ stereo video, filmed from a mov-
ing car when driving in typical residential and commercial
area. The dataset is very challenging, with a lot of occlusions,
cluttered background, shadows, illumination change and in-
tra class variation. The training dataset includes 50 images
randomly selected from another video captured in a different
area. Both training and testing dataset share typical 3D layout
of street scenes viewed from a driving vehicle.

For completeness, we conduct comparison experiments of
five models: NwEP, Nw2DEP, Nw3DEP, Nw E3D,
Nw3D E3D. The naming rule is that first part N* specifies
what features are used in node potential, ‘w’ means using ap-
pearance only, ‘w2D’ uses both appearance and 2D location,
‘w3D’ uses both appearance and 3D location. The second
part E* specifies what edge potential model is used. ‘EP’ is
the Potts model. ‘E3D’ uses 3D into the edge potential as in
Eq.(6). For whatever feature (‘w’ or ‘2D’ or ‘3D’), it’s mod-
eled by GMM of 10 centers for each class.

Each image is segmented into superpixels [5], and we
manually label each superpixel into one of the seven cate-
gories: vehicle, ground, building, people, tree, sky, others.
The last category includes all superpixels not belonging one
of the first 6 categories such as trash box, poles, traffic lights,
etc. A few superpixels are not labeled either because they are
too small or the class label is ambiguous (composed of pix-
els from more than one category). The unlabeled pixels count
for a very small portion of all pixels and they are not used
in the evaluation. Fig. 4 shows breakdown by category of
the proportion of pixels of all images in the testing dataset.



For each of the five models, fourβ values{0.5, 1.0, 1.5, 2.0}
are tested. We report per-class accuracy in Fig. 4, which is
diagonal of the normalized pixel-wise confusion matrix, i.e.
# of pixels correctly labeled in classc
# of pixels with ground truth labelc . The last column shows the over-

all accuracy, i.e.# of correctly labeled pixels
total # of pixels . Samples of qualitative

results are shown in Fig. 5. For each model, the reported
results use theβ that gives the best overall accuracy perfor-
mance. From the result, we can see that

• Nw3D EP outperforms Nw2DEP, showing benefit of
using 3D location as a feature in the node potential.

• Nw E3D outperforms NwEP, showing benefit of using
3D distance in the edge potential.

• Nw3D E3D and Nw3DEP have comparative perfor-
mance. The reason could be for this dataset, 3D loca-
tion is already very informative of class labels.

• Performance improvement from using 3D depends on
the quality of 3D estimation. 3D estimation is a hard
problem itself, especially for object categories with a
small portion of pixels (like people) or little texture
(like sky). Ground is probably the easiest category for
3D estimation, and we can see obvious performance
boost by using 3D for this category.

Processing time per stereo pair is about 4 minutes (Matlab
code) on a desktop. Most of time is spent on estimating 3D
from stereo. Real time stereo algorithms such as [7] can be
used when processing time is a constraint.
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Fig. 4. Top: breakdown by category of proportion of pixels in
testing dataset. Bottom: per-class accuracy and overall accu-
racy of five models.

4. DISCUSSION AND CONCLUSION

In this paper, we propose to augment MRF model for object
classification by incorporating 3D information into the node

and edge potential. 3D location distribution statistics ishelp-
ful for applications where depth is informative for different
object classes. 3D distance can help discern “fake” neighbors
from “true” neighbors in 2D, which is generally applicable to
many situations. We believe advances in 3D reconstruction
will lead to more active research in using 3D for high level
vision tasks.

Fig. 5. Qualitative results. From top to bottom: input image,
ground truth, NwEP, Nw2DEP, Nw3DEP, Nw E3D,
Nw3D E3D. Color of each category is the same as in Fig. 4.
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