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In this paper, we propose to use 3D information to augmert
the Markov random field (MRF) model for object recogni-
tion. Conventional MRF for image-based object recognitior :
usually uses appearance and 2D location as features in t%:
model. The problem is solved by finding the globally optimal -
assignment that minimizes an energy defined in MRF. We es
timate rough 3D information from stereo image pairs, and in-
corporate such information into node and edge potentiatmod
els in the conventional MRF. Introducing 3D location inte th
node potential can take advantage of the 3D location distrib
tion statistics of different classes. Considering 3D disein ~ Fig- 1. A synthesized example showing the advantage of us-
the edge potentia| can he|p d|st|ngu|5h “true” neighbwﬂfr Ing 3D location. FirSt, 2D location distribution of two ckes
“fake” neighbors in 2D. Experiments show improved recog-may overlap with each other (2D ellipses), while additional
nition results by using the proposed technique_ depth information may hEIp dlStIthISh two classes (3D el-
) . i lipses). Second, neighboring pixels in 2D may be far apart in

Index Terms— object recognition, Markov random field, 3D (so-called “fake” neighbors), which can be distinguhe

3D, stereo from “true” neighbors in 3D by measuring 3D distance.
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1. INTRODUCTION

o . o o ) reconstruction, and shape variation within one class can be
MRF is widely used in many vision applications like $€g-|arge.

mentation and object recognition. It offers a mathematical
framework to model contextual relationship of pieces of lo-
cal information. A typical application of MRF is to recoggiz
object categories of each pixel(or superpixel) in an image.

Proposed method.The primary contribution of our paper

is to incorporate 3D information into the MRF framework for
object classification. How 3D can help improving the classifi
L N e cation performance in MRF? Fig. 1 uses a simple synthesized
training procedure, feature distribution statistics afteab- example to illustrate the motivation. Assuming we have a lot

J.eCt category Is coII_ected based on training samples; i teSo images taken at different places at different time in Emi
ing procedure, assignment of class labels depends on each . L . .

S o : : environment (e.g. driving environment). We want to classif
pixel's similarity to training samples and interaction amgo

. : . . : : every pixel in the image to be one of the two classes. Assum-
neighboring pixels. Optimal class assignment is solved ang objects from class lsf tend to be closer to camera than
minimizing a target energy function.

Related work. MRF is used for interactive segmentation objects in class OK) (.. when class O'is building along the

o . . i sidewalk, and class 1 is vehicle). If we use a Gaussian model
to partition an image into two classes: foreground and back- ; A .

: o capture the 2D location distribution of each class, Ganss
ground [1]. In their papaer, 2D knowledge (texture, edges

. ; . . distributions of two classes (2D ellipses) may well overlap
.Ob]eCt bouqqlary) Is explored, but no 3D information. 3D Ob'with each other, making it difficult to distinguish class ¢hb
ject recognition has also been studied. Brostow et al. sho

motion and structure can boost recognition performance [2 rom 2D location. However, Gaussian distributions of 3D lo-
. L 9 pe . ation of two classes (3D ellipses) are well separated,ithus
They use randomized decision forests classifier, which do

$3rmative of the class label. MRF can easily takes advantage

ir:](\)/teg:io (zjﬁelz %%nt(;a;teu(z:atl r;ecl(&;t'mi)hr:p[;])f f%lz:(ﬁls?n }él:f‘?:(lz etn?l'of 3D location distribution by incorporating the distriburt
9 ) g ' 9 DN gatistics into thewode potential. Another way MRF can uti-

ing one 3D object from arbitrary view point and 3D 9€OME- 17 & 3D information is to estimate real distance of neigliopr

try modeling. Our work don't rely on precise 3D geometrypixels. If two pixels are neighborsin 2D image, they are more
*Thanks to ITRI of Taiwan for funding. likely to be assigned the same class label in MRF. However,




superpixels. This is done in two steps. First, the best warpi
parameter for each superpixel is estimated using optioal flo
algorithm. Second, all found warping parameters are shared
among all superpixels, and MRF is applied to find globally
optimal solution. Fig. 2(d) shows the final disparity map.
. Any other stereo algorithm producing good disparity esteana
"; "",guperpixelz can be used to replace this algorithm.
/ / The 3D plane parametdf = [II;, 115, T3] is given by
N \ Il = [a/B,bf,/(Bfs),c/(Bf:)]. We can compute 3D loca-
superpixell tion of any pixel using its 2D coordinates and 3D plane pa-
Image coordinates rameterIl. In section 2.4, we will compute 3D distance of
© (d) () neighboring superpixels. The distance is defined as the aver
age distance of projecting the center of one superpixeldo th
plane of the other superpixel, as illustrated in Fig. 2(e).
Fig. 2. (a) camera setup and camera coordinates (b) corre-
spondences in rectified stereo image pair (c) segmentation . .
image into superpixels (d) disparity map (e) computing 3 -2. Baseline: MRF based Algorithm
distance of two superpixels. In the MRF based algorithm, the image is modeled as a
Markov random field. Each nodeg represents the class of a
. . . ixel (or superpixel), and neighboring pixels (or supeetsk
nelg?porss[;n 2D ma\;//vcomlelz Ikr]om d|ﬁ§rre1r|;t classe“? in? bg fﬁgre connected via edges. Assuming ther&aobject classes,
apartin space.“ < Sa hose Neighibors as "ake NeIgn; .y o goal is to inference the class labet {1,2,...,C}
bors, compared to "true” neighbors in 3D space, as shown 'Yor each pixel. We choose the superpixel representation, be
Fig. 1. By incorporating 3D distance into tledge potential, ] ' . N '
MRF is able to discern “fake” and “true” neighbors cause its computatlo_nal complexity is mgch less than that of
' the pixel representation. Each node emits an observation

met?]i;gopr?g"lg.iecégnmza’t\.'\c/;e;pé%nf?:;?"sst;rtgeapr;rpésf;which is the appearance feature represented by mean Luv
, INcluding estimatl ' ! color of the superpixel. The model is illustrated in Fig. 3.

view of basic MRF and 3D extensions. Section 3 shows qual- . o )
o L . The joint probability of superpixel class and appearance
itative and quantitative results. Section 4 concludes. S 2 X i

over the entire image is given in Eq.(1):

depth

2. 3D EXTENSION OF MRF BASED ALGORITHM P, Y) oc [T outa) T wislai 2y (1)
i i,jEE
2.1. Estimating 3D from Stereo
g $ilwi = ¢) = P(Y:lGMMeotor(c)) ©)
We use stereo image pairs captured by Point Grey Bumblebee V(2 15) = e L (@iF#w;) (3)
BBX3-13S2C camera to estimate the disparity map. Images
are rectified and scaled to si20 x 240 before processing. In Eq.(1), ¢ represents the node-potential andrepre-

Correspondences lie on the same row of rectified images (Figents the edge potentiab; (x;) captures the correlation be-
2(b)). Disparity is the horizontal displacement of cor@sp tween the appearance and class label, indicating the-likeli
dence. We use the camera coordinates system, where the didod ofz; coming from clasg based on color af; and color
gin is the camera center and XY plane is fixed to the imagelistribution of class:. Node potentials can be learned from

plane as shown in Fig. 2(a). the training data. In Eq.(2Q4 MM .00 (¢) is @ Gaussian mix-
3D coordinateg X, Y, Z) can be computed from 2D im- ture model (GMM) learnt for class. In Eq.(3),v is simply
age coordinate$x,y) and disparityd using [X,Y,Z] =  the Potts model, which biases neighboring nodes to have the

[xB/d,yBf./(dfy), Bf:/d]. fa, f, (focal length) andB  same class labell(x; # ;) is the identity indication func-
(baseline) are parameters specified by the BBX3 camera. tion, which equals 1 whemn; # «; and equals O otherwisg.

We adopt a similar approach to [4] to design the stereo aleontrols the strength of such bias:= 0 means no interac-
gorithm. It gives satisfying disparity estimates for thédmor  tion among neighbors and class label is decided dgcally;
driving dataset. The right view is divided into segmentsigho large puts high penalty when neighbors are assigned differ-
ing local appearance homogeneity using mean shift segmeent class labels, thus encouraging homogenous label assign
tation (Fig. 2(c)) [5]. These segments are usually refetoed mentsin the image as a whole. Approximate MAP (maximum
as superpixels. Assuming all pixels in each superpixel coma posteriori) solution to the MRF can be inferred by Loopy
from the same planél in 3D (II; X + II,Y + IIsZ = 1),  belief propagation (LoopyBP) [6], which maximizes the join
thus the disparity satisfy = ax + by + ¢ [4]. The taskisto  probability P(X', ). The inference engine will output for
find the best(a, b, ¢) (termed as warping parameters) for all each node a vector of sizé x 1, representing the belief of



different class labels. To justify the fact that “fake” nieig
bors in 2D which are actually far apart in 3D are less likely
to come from the same class than “true” neighbors, the edge
potential is modified to reflect the 3D distance of neighbgrin
superpixels, as shown in Eq.(6) (the change is highlighted i

red).
wlj (xi; xj) _ e_(5.(tl().s:(i71,(:.s:s(:t71,:t_]))~I(.’E,;;£mj) (6)
closeness(x;, x;) = e~ Dist@ia)) @)
Fig. 3. MRF model: each node; represents a superpixel, The termcloseness(xz;, x;) computed from Eq.(7) is in

each edge corresponds to two neighboring superpixels. TH¢tween 0 and 1. Effectivé (penalty of assigning differ-
node potentialy; (z;) captures the correlation between a su-€Nt class labels ta;, z;) in the edge potential;; becomes
perpixel’s class label and its appearance. The edge potefi: closeness(zi,z;), putting higher penalty whem; and

tial ;; (x;, ;) is simply the Potts model, penalizing different #; aré close and lower penalty when they are far apart.
label assignments to neighboring nodes.nodes represent Dist(zi, ;) in Eq.(7) is the 3D distance of superpixel
appearance feature (color); nodes represent 3D location, @ndz;, computed as described in section 2.1.

which don't exist in conventional MRF. Changing representation of edge potenti@loes not add
to the complexity of solving the energy-minimization prob-

. _ . . lem in LoopyBP, because;;(z;, ;) of all edges are pre-
this node coming from each class. Optimal class lahes  computed before feeding into the inference engine.
simply the clasg with the largest belief.

. . . 3. EXPERIMENTAL RESULTS
2.3. Incorporating 3D in MRF Node Potential
Now we extend a node to emit two observatiopsandd;, ~ Dataset. Our testing dataset includes randomly sampled 50
representing appearance and 3D location (Fig. 3). ThisleadMades from a 60 minutes’ stereo video, filmed from a mov-
to the addition of another node potentigJ,which captures "9 car when driving in typical residential and commercial
the correlation between the class label and 3D locationef thar€a. The dataset is very challenging, with a lot of occhsio
superpixel center; can be learned in a manner analogous tdfluttered background, shadows, illumination change and in
the one used for learning in the previous section (Eq.(4)). ra class variation. The training dataset includes 50 image
Here we assume color featuge and location feature, are randomly selected from another video captured in a differen
independent features given class label This assumption aréa. Bothtraining and testing dataset share typical 3outy
of independent features is similar to Naive Bayes classifieff Street scenes viewed from a driving vehicle. _
It reduces model complexity and makes the model robust in FOr completeness, we conduct comparison experiments of
case of limited training samples. Eq.(5) shows correspandi five models: NweP,  Nw2DEP, Nw3DEP,  NwE3D,

change in the joint probabilit{ (the change is highlighted in NW3D-E3D. The naming rule is that first part N* specifies
red). what features are used in node potential, ‘w’ means using ap-

pearance only, ‘w2D’ uses both appearance and 2D location,
Gi(z; = ¢) = P(di|GMMs3proc(c)) (4) ‘w3D’ uses both appearance and 3D location. The second
. e o part E* specifies what edge potential model is used. ‘EP’ is
P(X, Y, D) H di(i) H Gilwi) HE vij (@i, 25) - (5) the Potts model. ‘E3D’ uses 3D into the edge potential as in

! ! S Eq.(6). For whatever feature (‘w’ or ‘2D’ or ‘3D’), it's mod-

In Eq.(5),¢ and¢ are required to be learnt only once, and €/ed by GMM of 10 centers for each class.

thus can be lumped together into a single node potentiad, thu ~ Each image is segmented into superpixels [5], and we
allowing to reuse the machinery of the original MRF frame-manually label each superpixel into one of the seven cate-

work. Adding¢ does not add to complexity of inference, be-gories: vehicle, ground, building, people, tree, sky, cthe

cause node potentials are pre-computed once before feedih§e last category includes all superpixels not belonging on
into the inference engine. of the first 6 categories such as trash box, poles, traffi¢digh

etc. A few superpixels are not labeled either because treey ar
too small or the class label is ambiguous (composed of pix-
els from more than one category). The unlabeled pixels count
Now we modify the edge potentidl to consider 3D distance for a very small portion of all pixels and they are not used
of two neighboring nodes. In Potts model, the same pemalty in the evaluation. Fig. 4 shows breakdown by category of
is exerted if two neighboring superpixels in 2D are assignethe proportion of pixels of all images in the testing dataset

2.4. Incorporating 3D in MRF Edge Potential



For each of the five models, fogrvalues{0.5, 1.0, 1.5,2.p  and edge potential. 3D location distribution statisticeefp-

are tested. We report per-class accuracy in Fig. 4, which il for applications where depth is informative for diffete

diagonal of the normalized pixel-wise confusion matrig, i. object classes. 3D distance can help discern “fake” neighbo

# of pixel tly labeled in cl e 1a® A : - :

#OOfp")’i‘fefscv‘;{t’ﬁZr{)uid‘iﬁltr:’};bz“. The last column shows the over- from true qelghbors in 2D, which is gengrally applicabte t

all accuracy, i.eofcorrectly labeled pixels g 5 a5 of qualitative Many situations. We believe advances in 3D reconstruction
e total # of pixels ' . . . . .

results are shown in Fig. 5. For each model, the reportetyill 1€ad to more active research in using 3D for high level

results use the that gives the best overall accuracy perfor-ViSion tasks.

mance. From the result, we can see that

e Nw3D_EP outperforms Nw2LCEP, showing benefit of
using 3D location as a feature in the node potential.

¢ Nw_E3D outperforms NwEP, showing benefit of using
3D distance in the edge potential.

e Nw3D_E3D and Nw3DEP have comparative perfor-
mance. The reason could be for this dataset, 3D loca
tion is already very informative of class labels.

e Performance improvement from using 3D depends o
the quality of 3D estimation. 3D estimation is a hard
problem itself, especially for object categories with a
small portion of pixels (like people) or little texture
(like sky). Ground is probably the easiest category for
3D estimation, and we can see obvious performanc
boost by using 3D for this category.

Processing time per stereo pair is about 4 minutes (Matlat
code) on a desktop. Most of time is spent on estimating 3
from stereo. Real time stereo algorithms such as [7] can b
used when processing time is a constraint.

B vehicle (15.13%) [ Tree (5.89% Fig. 5. Qualitative results. From top to bottom: input image,

[ Ground (66.13%) [ sky (1.95%) ground truth, NwEP, Nw2DEP, Nw3DEP, NwE3D,
B suiding (0.86%) [l Others (0.70%) Nw3D_E3D. Color of each category is the same as in Fig. 4.
. People (0.34%) . Unlabeled
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