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Abstract— Helping a robot to understand a scene can include
many sub-tasks, such as scene categorization, object detection,
geometric labeling, etc. Each sub-task is notoriously hard, and
state-of-art classifiers exist for many sub-tasks. It is desirable
to have an algorithm that can capture such correlation without
requiring to make any changes to the inner workings of any
classifier, and therefore make the perception for a robot better.
We have recently proposed a generic model (Feedback Enabled
Cascaded Classification Model) that enables us to easily take
state-of-art classifiers as black-boxes and improve performance.

In this video, we show that we can use our FeCCM model to
quickly combine existing classifiers for various sub-tasks, and
build a shoe finder robot in a day. The video shows our robot
using FeCCM to find a shoe on request.

I. INTRODUCTION

Consider building a simple robot that can fetch items on
request, such as in Figure 1 or in some other prior works such
as [12], [4]. This requires building several components—path
planning, control, and so on. While most of these algorithms
have been developed and easily available for use in open-
source repositories (e.g., ROS [5]), perception still remains
one of the big challenges—it is quite hard to build a reliable
shoe detector on a short notice.

In particular, some state-of-the-art classifiers already exist
for tasks such as scene categorization [11], scene geometric
layout [8], object detection [3], and such. While the accuracy
of a particular object detector may not be high enough,
several other attributes can bring its accuracy to acceptable
levels. For example, in Fig. 1, if we know that the scene
is an office and we also know the general surface layout of
the scene (i.e., where is the ground, walls, etc.), detecting a
shoe becomes easier—because we know where to look for.
Hence, if we are able to figure out a method to combine
these state-of-the-art classifiers for different sub-tasks easily,
robots have a hope to be able to perceive the environment.

Unfortunately, it turns out that previous works on combin-
ing classifiers are often daunting in that those methods tend
to be adhoc and require a researcher to understand the inner
workings of each classifier. For a roboticist, this could be
even more difficult—not only one has to worry about getting
algorithms such as planning and control working, but now
he has to understand several different perception algorithms
in order to build a robot just to fetch a shoe!

In our work, we have recently proposed generic learning
algorithms called FeCCMs ([7], [10], [9]) using which one
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Fig. 1. Left: A mission for the robot: finding a shoe. Right: our robot.
The robot takes advantage of scene categorization and geometric layout to
aim shoe detection with our FeCCM algorithm [9].

can quickly combine different classifiers together, without
needing to know how each of them works. Our method con-
siders each different perception algorithm as a “blackbox”.
That is, as long as each algorithm can produce an output
given some inputs, and provide an interface to for its own
training, our method can combine these sub-tasks in order
to build a reliable classifier for a particular task.

In order to demonstrate the power of our approach, we
took the challenging task of building a robot that can find a
shoe on request. And we wanted to be able to do so within
a day of computational time and within a day of human
hours. We found the controllers for the robot and laser-based
obstacle avoidance in ROS, but did not find a reliable shoe-
finder code anywhere. One naive option would be to take the
usual approach of collecting hundreds of thousands of shoe
images, and then train a classifier, or use humans as domain
experts to write hand-written rules about how to find a shoe
better in an image. Instead, we just plugged in a standard
off-the-shelf code for scene categorization, off-the-shelf code
for geometric scene layout and off-the-shelf code for object
detection. Even given only a few images to train with, we
were quickly able to build a reliable shoe classifier.

This video submission does not allow us to present more
quantitative results, but please refer to our algorithms and
results described in [9] where we show that on six different
vision tasks, our final outputs always improve performance.

We conduct experiments both offline and on robots. In the
offline experiments, we show that we achieve improvements
on each of these sub-tasks in indoor scene understanding:
scene categorization, geometric layout, and object detection.
Based on the learned model, we conduct experiments on our
robot to complete a mission of finding a shoe in an indoor
scene (as shown in Figure 1 and in the video).
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Fig. 2. FeCCM model for composing three sub-modules to aid indoor
scene understanding. (Each task in the first layer is parametrized by 6; and
its output is Z;, while each in the second layer is parametrized by w; with
its output Y;)

Yy Y,

II. ALGORITHM

Our algorithm is composed of a 2-layer cascade with a
hidden intermediate layer, which automatically learns con-
nections between layers for optimizing the target task on
the second layer [10] . Instead of learning a separate set of
parameters for a specific sub-task, We propose an algorithm
that optimizes the joint likelihood of all sub-tasks in [9]. In
our model, the outputs from classifiers on the first layer go as
input into the classifiers in the second layer. Figure 2 shows
an example of using the proposed FeCCM model to compose
scene categorization, object detection and geometric layout.

This learning algorithm can be trained with heterogenous
datasets and with various perception algorithms. We treat
each classier as a “black-box”, with no restrictions on its
operation other than requiring the ability to train on data and
have input/output interface. This is often the case in robotics,
where we want to quickly combine existing classifiers for
building a robot for a particular task. We refer the reader to
[10], [9] for more details on the algorithm, but we summarize
how to use the algorithm for a particular robotic task:

1) Step 1: Download the code and datasets (whatever limited
amount you can get) for a number of perception task related
to your perception task.

2) Step 2: Train each classifier individually and estimate the
parameters, using the code provided by them.

3) Step 3. Use the feedback step in [9] to estimate the latent
variables.

4) Step 4: Go to step 2 and repeat for a few iterations.

Following these simple steps, we have shown that for a wide

variety of tasks, we get significant improvements.

Robotic Tasks: This model can be widely used for robots
that want to learn multiple tasks. Robots with different func-
tions may need to combine a different group of classifiers.
Developing a specific model to connect the tasks would need
considerable insight into the inner workings of each task and
also into how to connect/model each of them. However, with
the generic FeCCM model, we can simply treat any existing
state-of-the-art classifiers as black-boxes.

III. EXPERIMENTS

A. Offline Experiments

We combine three tasks for indoor scene understanding (in
Figure 2): scene categorization, geometric layout and object
detection. For scene categorization, we use the indoor scene
subsets in the Cal-Scene Dataset [2] and classify an image
into one of the four categories: bedroom, living room, kitchen

TABLE I
SUMMARY OF RESULTS FOR THE THREE TASKS.

Scene Geometric Object detection
Model Categorization Labeling tv  table sofa shoe
(% Accuracy) (% Accuracy) (% Average precision)
Base-model 65.1 75.3 38.4 228 245 415
CCM [7] 65.1 84.9 389 226 244 42.1
FE-CCM 66.7 86.3 39.1 23.0 24.5 438

and office. For geometric layout, we use the Indoor Layout
Data [6] and assigning each pixel to one of three geometry
classes: ground, wall and ceiling. For object detection, we
use the PASCAL 2007 Dataset [1] and our own shoe dataset
to learn detectors for four object categories: shoe, dining
table, tvmonitor, and sofa. For the classifiers in the first layer,
we use the scene classification algorithm in [11], the pixel-
based geometry labeling algorithm in [8], and the part-based
object detection algorithm in [3] for the corresponding tasks.
Table I gives a summary of results for all three tasks. Our
FeCCM method outperforms the base models (i.e. state-of-
art methods) as well as the original CCM for most tasks.

B. Robotic Experiments

we use the FeCCM model to build a shoe-finding robot (as
shown in Figure 1 and in the video). With only a few training
images, it is hard to train a robust shoe detector to find a shoe
far away from the camera. However, the robot learns to take
advantage of the other tasks through the FeCCM model and
performs a more robust shoe detection.

In the video, we show that we can use our FeCCM model
to quickly combine existing classiers for various sub-tasks,
and build a shoe finding robot in a day. The video shows
our robot using the trained FeCCM to find a shoe on request.
Upon the user’s request, the robot starts taking an image, and
performs the tasks in the FeCCM model. It keeps moving
and repeating this process until a shoe is detected. Based
on detected position on the image, the robot calculates the
shoe’s physical position and navigates towards the shoe.
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