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Abstract —Scene understanding includes many related sub-tasks, such as scene categorization, depth estimation, object
detection, etc. Each of these sub-tasks is often notoriously hard, and state-of-the-art classifiers already exist for many of them.
These classifiers operate on the same raw image and provide correlated outputs. It is desirable to have an algorithm that can
capture such correlation without requiring any changes to the inner workings of any classifier.
We propose Feedback Enabled Cascaded Classification Models (FE-CCM), that jointly optimizes all the sub-tasks, while requiring
only a ‘black-box’ interface to the original classifier for each sub-task. We use a two-layer cascade of classifiers, which are
repeated instantiations of the original ones, with the output of the first layer fed into the second layer as input. Our training method
involves a feedback step that allows later classifiers to provide earlier classifiers information about which error modes to focus on.
We show that our method significantly improves performance in all the sub-tasks in the domain of scene understanding, where
we consider depth estimation, scene categorization, event categorization, object detection, geometric labeling and saliency
detection. Our method also improves performance in two robotic applications: an object-grasping robot and an object-finding
robot.
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1 INTRODUCTION

ONE of the primary goals in computer vision is holistic
scene understanding, which involves many sub-tasks,

such as depth estimation, scene categorization, saliency
detection, object detection, event categorization, etc. (See
Figure 1.) Each of these tasks explains some aspect of a
particular scene and in order to fully understand a scene,
we would need to solve for each of these sub-tasks. Several
independent efforts have resulted in good classifiers for
each of these sub-tasks. In practice, we see that the sub-
tasks are coupled—for example, if we know that the scene
is an indoor scene, it would help us estimate depth from
that single image more accurately. In another example in the
robotic grasping domain, if we know what kind of object
we are trying to grasp, then it is easier for a robot to figure
out how to pick it up. In this paper, we propose a unified
model that jointly optimizes for all the sub-tasks, allowing
them to share information and guide the classifiers towards
a joint optimal. We show that this can be seamlessly applied
across different applications.

Recently, several approaches have tried to combine these
different classifiers for related tasks in vision [1–10];
however, most of them tend to be ad-hoc (i.e., a hard-
coded rule is used) and often an intimate knowledge of
the inner workings of the individual classifiers is required.
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Even beyond vision, in many other domains, state-of-the-art
classifiers already exist for many sub-tasks. However, these
carefully engineered models are often tricky to modify, or
even to simply re-implement from the available descrip-
tions. Heitz et. al. [11] recently developed a framework for
scene understanding called Cascaded Classification Models
(CCM ) treating each classifier as a ‘black-box’. Each
classifier is repeatedly instantiated with the next layer using
the outputs of the previous classifiers as inputs. While this
work proposed a method of combining the classifiers in a
way that increased the performance in all of the four tasks
they considered, it had a drawback that it optimized for
each task independently and there was no way of feeding
back information from later classifiers to earlier classifiers
during training. This feedback can potentially help the
CCM achieve a more optimal solution.

In our work, we propose Feedback Enabled Cascaded
Classification Models (FE-CCM ), which provides feed-
back from the later classifiers to the earlier ones, during
the training phase. This feedback, provides earlier stages
information about what error modes should be focused on,
or what can be ignored without hurting the performance
of the later classifiers. For example, misclassifying a street
scene as highway may not hurt as much as misclassifying a
street scene as open country. Therefore we prefer the first
layer classifier to focus on fixing the latter error instead
of optimizing the training accuracy. In another example,
allowing the depth estimation to focus on some specific
regions can help perform better scene categorization. For
instance, the open country scene is characterized by its
upper part as a wide sky area. Therefore, estimating the
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Fig. 1. Given a test image, Holistic Scene Understanding corre-
sponds to inferring the labels for all possible scene understanding
dimensions. In our work, we infer labels corresponding to, scene
categorization, event categorization, depth estimation (Black = close,
white = far), object detection, geometric layout (green = vertical, red
= horizontal, blue = vertical) and saliency detection (cyan = salient)
as shown above and achieve this jointly using one unified model.
Note that different tasks help each other, for example, the depth
estimate of the scene can help the object detector look for the horse;
the object detection can help perform better saliency detection, etc.

depth well in that region by sacrificing some regions in the
bottom may help to correctly classify an image. In detail,
we do so by jointly optimizing all the tasks; the outputs of
the first layers are treated as latent variables and training
is done using an iterative algorithm. Another benefit of our
method is that each of the classifiers can be trained using
their own independent training datasets, i.e., our model does
not require a datapoint to have labels for all the sub-tasks,
and hence it scales well withheterogeneousdatasets.

In our approach, we treat each classifier as a ‘black-box’,
with no restrictions on its operation other than requiring the
ability to train on data and have an input/output interface.
(Often each of these individual classifier could be quite
complex, e.g., producing labelings over pixels in an entire
image.) Therefore, our method is applicable to many other
tasks that have different but correlated outputs.

In extensive experiments, we show that our method
achieves significant improvements in the performance of
all the six sub-tasks we consider: depth estimation, object
detection, scene categorization, event categorization, geo-
metric labeling and saliency detection. We also successfully
apply the same model to two robotics applications: robotic
grasping, and robotic object detection.

The rest of the paper is organized as follows. We first
define holistic scene understanding and discuss the related
works in Section 2. We describe our FE-CCM method
in Section 3 followed by the discussion about handling
heterogeneous datasets in Section 4. We provide the imple-
mentation details of the classifiers in Section 5. We present
the experiments and results in Section 6 and some robotic
applications in Section 7. We finally conclude in Section 8.

2 OVERVIEW OF SCENE UNDERSTANDING

2.1 Holistic Scene Understanding
When we look at an image of a scene, such as in Figure 1,
we are often interested in answering several different ques-
tions: What objects are there in the image? How far are
things? What is going on in the scene? What type of scene
it is? And so on. These are only a few examples of questions
in the area of scene understanding; and there may even be
more.

In the past, the focus has been to address each task in
isolation, where the goal of each task is to produce a label
Yi ∈ Si for the ith sub-task. If we are considering depth
estimation (see Figure 1), then the label would beY1 ∈
S1 = R

100×100
+ for continuous values of depth in a100 ×

100 output. For scene categorization, we will haveY2 ∈
S2 = {1, . . . , K} for K scene classes. If we haven sub-
tasks, then we would have to produce an output as:

Y = {Y1, . . . , Yn} ∈ S1 × S2 . . . × Sn.

The interesting part here is that often we want to solve
different combinations of the sub-tasks depending on the
situation. The goal of this work is to design an algorithm
that does not depend on the particular sub-tasks in question.

2.2 Related Work
Cascaded classifiers.Using information from related tasks
to improve the performance of the task in question has
been studied in various fields of machine learning. The idea
of cascading layers of classifiers to aid a task was first
introduced with neural networks as multi-level perceptrons
where, the output of the first layer of perceptrons is passed
on as input to the next layer [12–14]. However, it is often
hard to train neural networks and gain an insight into its
operation, making it hard to work for complicated tasks.

The idea of improving classification performance by
combining outputs of many classifiers is used in methods
such as Boosting [15], where many weak learners are
combined to obtain a more accurate classifier; this has
been applied to tasks such as face detection [16, 17]. To
incorporate contextual information, Fink and Perona [18]
exploited local dependencies between objects in a boost-
ing framework, but did not allow for multiple rounds of
communication between objects. Torralba et al. [19] intro-
duced Boosted Random Fields to model object dependency,
which used boosting to learn the graph structure and local
evidence of a conditional random field. Tu [20] proposed a
more general framework which used pixel-level label maps
to learn a contextual model through a cascaded classifier
approach. All these works mainly consider the interactions
between labels of the same type. However, in our CCM
framework [21, 22], the focus is on capturing contextual
interactions between labels of different types. Furthermore,
compared to the feed-forward only cascade method in
[20], our model with feedback not only iteratively refines
the contextual interactions, but also refines the individual
classifiers to provide helpful context.

Sensor fusion.There has been a huge body of work in
the area of sensor fusion where classifiers output the same
labels but work with different modalities, each one giving
additional information and thus improving the performance,
e.g., in biometrics, data from voice recognition and face
recognition is combined [23]. However, in our scenario,
we consider multiple tasks where each classifier is tackling
a different problem (i.e., predicting different labels), with
the same input being provided to all the classifiers.

Structured Models for combining tasks.While the meth-
ods discussed above combine classifiers to predict thesame
labels, there is a group of works that designs models
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for predicting heterogenous labels. Kumar and Hebert [1]
developed a large MRF-based probabilistic model to link
multi-class segmentation and object detection. Li et al. [24]
modeled mulitple interactions within tasks and across tasks
by defining a MRF over parameters. Similar efforts have
been made in the field of natural language processing.
Sutton and McCallum [6] combined a parsing model with
a semantic role labeling model into a unified probabilis-
tic framework that solved both simultaneously. Ando and
Zhang [25] proposed a general framework for learning
predictive functional structures from multiple tasks. All
these models require knowledge of the inner workings of
the individual classifiers, which makes it hard to fit existing
state-of-the-art classifiers of certain tasks into the models.

Structured learning algorithms (e.g., [26–28]) can also be
a viable option for the setting of combining multiple tasks.
There has been recent development in structured learning
on handling latent variables (e.g. hidden conditional random
field [29], latent structured SVM [30]), which can be poten-
tially applied to multi-task settings with disjoint datasets.
With considerable understanding into each of the tasks, the
loss function in structured learning provides a nice way to
leverage different tasks. However, in this work, we focus
on developing a more generic algorithm that can be easily
applied even without intimate knowledge of the tasks.

There have been many works which show that with a
well-designed model, one can improve the performance of
a particular task by using cues from other tasks (e.g., [7–
9]). Saxena et al. manually designed the terms in an MRF
to combine depth estimation with object detection [2] and
stereo cues [10]. Sudderth et al. [5] used object recognition
to help 3D structure estimation.

Context. There is a large body of work that leverages con-
textual information to help specific tasks. Various sourcesof
context have been explored, ranging from the global scene
layout, interactions between objects and regions to local
features. To incorporate scene-level information, Torralba et
al. [31, 32] used the statistics of low-level features across
the entire scene to prime object detection or help depth
estimation. Hoiem et al. [33] used 3D scene information to
provide priors on potential object locations. Park et al. [34]
used the ground plane estimation as contextual information
for pedestrian detection. Many works also model context to
capture the local interactions between neighboring regions
[35–37], objects [38–42], or both [43–45]. These methods
improve the performance of some specific tasks by com-
bining information from different aspects. However, most
of these methods can not be applied to cases when we only
have “black-box” classifiers for the individual tasks.

Holistic Scene Understanding.Hoiem et. al. [3] proposed
an innovative but ad-hoc system that combined bound-
ary detection and surface labeling by sharing some low-
level information between the classifiers. Li et. al. [4, 46]
combined image classification, annotation and segmenta-
tion with a hierarchical graphical model. However, these
methods required considerable attention to each classifier,
and considerable insight into the inner workings of each
task and also the connections between them. This limits
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Fig. 2. The proposed Feed-back enabled cascaded classifi-
cation model (FE-CCM) for combining related classifiers. (∀i ∈
{1, 2, . . . , n}, Ψi(X) = Features corresponding to Classifieri ex-
tracted from image X, Zi = Output of the Classifieri in the first
stage parameterized by θi, Yi = Output of the Classifieri in the
second stage parameterized by ωi). In the proposed FE-CCM model,
there is feed-back from the latter stages to help achieve a model
which optimizes all the tasks considered, jointly. Here Classifieri’s
on the two layers can have different forms though they are for the
same classification task. (Note that different colors of lines are used
only to make the figure more readable.)

the generality of the approaches in introducing new tasks
easily or being applied to other domains.

Deep Learning.There is also a large body of work in the
areas of deep learning, and we refer the reader to Bengio
and LeCun [47] for a nice overview of deep learning archi-
tectures and Caruana [48] for multitask learning with shared
representation. While efficient back-propagation methods
like [49] have been commonly used in learning a multi-
layer network, it is not as easy to apply to our case where
each node is a complex classifier. Most works in deep learn-
ing (e.g., [50–52]) are different from our work in that, those
works focus on one particular task (same labels) by building
different classifier architectures, as compared to our setting
of different tasks with different labels. Hinton et al. [51]
used unsupervised learning to obtain an initial configuration
of the parameters. This provides a good initialization and
hence their multi-layered architecture does not suffer from
local minimas during optimization. At a high-level, we
can also look at our work as a multi-layered architecture
(where each node typically produces complex outputs, e.g.,
labels over the pixels in the image); and initialization in
our case comes from existing state-of-the-art individual
classifiers. Given this initialization, our training procedure
finds parameters that (consistently) improve performance
across all the sub-tasks.

3 FEEDBACK ENABLED CASCADED CLAS -
SIFICATION MODELS

In the field of scene understanding, a lot of independent
research into each of the vision sub-tasks has led to excel-
lent classifiers. These independent classifiers are typically
trained on different orheterogenousdatasets due to the
lack of ground-truth labels for all the sub-tasks. In addition,
each of these classifiers come with their own learning and
inference methods. Our goal is to consider each of them as
a ‘black-box’, which makes it easy to combine them. We
describe what we mean by ‘black-box classifiers’ below.

Black-box Classifier. A black-box classifier, as the name
suggests, is a classifier for which operations (such as
learning and inference algorithms) are available for use,
but their inner workings are not known. We assume that,
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given the training datasetX, features extractedΨ(X)
and the target outputs of theith task Yi, the black-box
classifier has some internal learning functionf i

learn with
parametersθi that optimizes the mapping from the inputs
to the outputs for the training data.1 Once the parameters
have been learnt, given a new data point,X with features
Ψ(X) ∈ R

K , whereK can be changed as desired,2 the
black-box classifier returns the outputŶi according to its
internal inference functionf i

infer. This is illustrated through
the equations below. For theith task,

Learning: θ
∗
i = optimize

θi

f
i
learn(Ψ(X),Yi; θi) (1)

Inference: Ŷi = optimize
Yi

f
i
infer(Ψ(X), Yi; θ

∗
i ). (2)

This approach of treating each classifier as a black-box al-
lows us to use different existing classifiers which have been
known to perform well at specific sub-tasks. Furthermore,
without changing their inner workings, it allows us to com-
pose them into one model which exploits the information
from each sub-task to aid holistic scene understanding.

3.1 Our Model
Our model is built in the form of a two-layer cascade,
as shown in Figure 2. The first layer consists of an
instantiation of each of the black-box classifiers with the
image features as input. The second layer is a repeated
instantiation of each of the classifiers with the first layer
classifier outputs as well as the image features as inputs.
Note that the repeated classifier on the second layer is
not necessary to have the same mathematical form with
the one on the first layer. Instead, we consider it as a
repeated instantiation only because they are used for the
same classification task.

Notation: We considern related sub-tasksClassifieri, i ∈
{1, 2, . . . , n} (Figure 2). We describe the notations used in
this paper as follows:

Ψi(X) Features corresponding toClassifieri extracted from
imageX.

Zi, Z Zi indicates output from the first layerClassifieri.
Many classifiers output continuous scores instead of
labels. In cases where this is not the case, it is trivial
to convert a binary classiers output to a log-odds
scores. For aK-class (K > 2) classifier, we consider
the output to be aK-dimensional vector.Z indicates
the set{Z1, Z2, . . . , Zn}.

θi, Θ θi indicates parameters corresponding to first layer
Classifieri. Θ indicates the set{θ1, . . . , θn}.

Yj , Y Yj indicates output for thejth task in the second
layer, using the original featuresΨj(X) as well
as all the outputs from the first layer as input.Y
indicates the set{Y1, Y2, . . . , Yn}.

ωj , Ω ωj indicates parameters for the second layer
Classifierj . Ω indicates the set{ω1, . . . , ωn}.

Γj , Γ Dataset for thejth task, which consists of labeled
pairs{X, Yj} in the training set.Γ represents all the
labeled data.

f i
infer, f i

learn the internal inference function and learning function
for the ith classifier on the first layer.

f ′i
infer, f ′i

learn the internal inference function and learning function
for the ith classifier on the second layer.

1. Unless specified, the regular symbols (e.g.X, Yi, etc.) are used for
a particular data-point, and the bold-face symbols (e.g.X, Yi, etc.) are
used for a dataset.

2. If the input dimension of the black-box classifier can not be changed,
then we will use that black-box in the first layer only.

With the notations in place we will now first describe
the inference and learning algorithms for the proposed
model in the following sections, followed by probabilistic
interpretation of our method.

3.2 Inference Algorithm
During inference, the inputsΨi(X) are given and our goal
is to infer the final outputsYi. Using the learned parameters
θi for the first level of classifiers andωi for the second
level of classifiers, we first infer the first-layer outputsZi

and then infer the second-layer outputsYi. More formally,
we perform the following.

Ẑi = optimize
Zi

f
i
infer(Ψi(X), Zi; θ̂i) (3)

Ŷi = optimize
Yi

f
′i

infer([Ψi(X) Ẑ], Yi; ω̂i) (4)

The inference algorithm is given in Algorithm 1. This
method allows us to use the internal inference function
(Equation 2) of the black-box classifiers without knowing
its inner workings. Note that the complexity here is no
more than constant times the complexity of inference in
the original classiers.

Algorithm 1 Inference
1. Inference for first layer:

for i = 1 : n
Infer the outputs of theith classifier using Equation 3;

end
2. Inference for second layer:

for i = 1 : n
Infer the outputs of theith classifier using Equation 4;

end

3.3 Learning Algorithm
During the training stage, the inputsΨi(X) as well as
the target outputs,Y1, Y2, . . . , Yn of the second level of
classifiers, are all observed (because the ground-truth labels
are available). In our algorithm, we considerZ (outputs
of layer 1 and inputs to layer 2) as hidden variables. In
previous work, Heitz et al. [11] assume that each layer is
independent and that each layer produces the best output
independently (without consideration for other layers), and
therefore use the ground-truth labels forZ even for training
the classifiers in the first layer.

On the other hand, we want to optimize for the final
outputs as much as possible. Thus the first layer classifiers
need not perform their best (w.r.t. groundtruth), but rather
focus on error modes that would result in the second
layer’s output (Y1, Y2, . . . , Yn) being more correct. There-
fore, we learn the model through an iterative Expectation-
Maximization formulation, given the independencies be-
tween classifiers represented by the model in Figure 2. In
one step (Feed-forward step) we assume the variablesZi’s
are known and learn the parameters and in the other step
(Feed-back step) we fix the parameters estimated previously
and estimate the variablesZi’s. Since theZi’s are not fixed
to the ground truth, as the iterations progress, the first level
of classifiers start focusing on the error modes which would
give the best improvement in performance at the end of
the second level of classifiers. The learning algorithm is
summarized in Algorithm 2.
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Algorithm 2 Learning
1. Initialize latent variablesZ with the ground-truthY .

2. Do until convergence or maximum iteration:{
Feed-foward step:Fix latent variablesZ, estimate the parametersΘ

andΩ using Equation 5 and Equation 6.

Feed-back step:Fix the parametersΘ andΩ, compute latent variables

Z using Equation 7.

}

Initialization: We initialize the model by setting the latent
variablesZi’s to the groundtruth, i.e.Zi = Z

gt
i . Training

with this initialization, our cascade is equivalent to CCM in
[11], where the classifiers (and the parameters) in the first
layer are similar to the original state-of-the-art classifier
and the classifiers in the second layer use the outputs of
the first layer in addition to the original features as input.

Feed-forward Step: In this step, we estimate the parame-
tersΘ andΩ. We assume that the latent variablesZi’s are
known (andYi’s are known because they are the ground-
truth during learning, i.e.Yi = Y

gt
i ). We then learn the

parameters of each classifier independently. Learningθi is
precisely the learning problem of the ‘black-box classifier’,
and learningωi is also an instantiation of the original learn-
ing problem, but with the original input features appended
with the outputs of the first level classifiers. Therefore, we
can use the learning method provided by the individual
black-box classifier (Equation 1).

θ̂i = optimize
θi

f
i
learn(Ψi(X),Zi; θi) (5)

ω̂i = optimize
ωi

f
′i

learn([Ψi(X) Z ], Yi; ωi) (6)

We now have the parameters for all the classifiers.

Feed-back Step:In the second step, we will estimate the
values of the variablesZi’s assuming that the parameters
are fixed (andYi’s are given because the ground-truth is
available, i.e.Yi = Y

gt
i ). This feed-back step is the crux

that provides information to the first-layer classifiers what
error modes should be focused on and what can be ignored
without hurting the final performance. Givenθi’s andωi’s
are fixed, we want theZi’s to be good predictions from the
first-layer classifiers and also help to increase the correction
predictions ofYi’s as much as possible. We optimize the
following function for the feed-back step:

optimize
Z

n
X

i=1

“

J
i
1(Ψi(X), Zi; θ̂i) + J

i
2(Ψi(X),Z, Yi; ω̂i)

”

(7)
where J i

1’s and J i
2’s are functions respectively

related to the first-layer classifiers and the
second-layer classifiers. one option is to have
J i

1(Ψi(X), Zi; θ̂i) = f i
infer(Ψi(X), Zi; θ̂i) and

J i
2(Ψi(X),Z, Yi; ω̂i) = f ′i

infer([Ψi(X),Z], Yi; ω̂i) if
the intrinsic inference functions for the classifiers are
known. More discussions will be given in Section 3.4 if
the intrinsic functions are unknown. The updatedZi’s
will be used to re-learn the classifier parameters in the
feed-forward step of next iteration. Note that the updated
Zi’s have continuous values. If the internal learning
function of a classifier accepts only labels, we threshold
the values ofZi’s to get labels.

3.4 Probabilistic Interpretation
Our algorithm can be explained with a probabilistic inter-
pretation where the goal is to maximize the log-likelihood
of the outputs of all tasks given the observed inputs, i.e.,
log P (Y|X), whereX is an image belonging to training
setΓ. Therefore, the goal of the proposed model shown in
Figure 2 is to maximize

log
Y

X∈Γ

P (Y|X; Θ, Ω) (8)

To introduce the hidden valuablesZi’s, we expand Equa-
tion 8 as follows, using the independencies represented by
the directed model in Figure 2.

=
X

X∈Γ

log
X

Z

P (Y1, . . . , Yn,Z|X; Θ, Ω) (9)

=
X

X∈Γ

log
X

Z

n
Y

i=1

P (Yi|Ψi(X),Z; ωi)P (Zi|Ψi(X); θi) (10)

However, the summation inside thelog makes it difficult
to learn the parameters. Motivated by the Expectation
Maximization algorithm [53], we iterate between the two
steps as described in the following. Again we initialize the
classifiers by learning the classifiers with ground-truth as
discussed Section 3.3.

Feed-forward Step: In this step, we estimate the param-
eters by assuming that the latent variablesZi’s are known
(andYi’s are known anyway because they are the ground-
truth). This results in

maximize
θ1,...,θn,ω1,...,ωn

X

X∈Γ

log
n

Y

i=1

P (Yi|Ψi(X),Z; ωi)P (Zi|Ψi(X); θi)

(11)

Now in this feed-forward step, the terms for maximizing
the different parameters turn out to be independent. So, for
the ith classifier we have:

maximize
θi

X

X∈Γ

log P (Zi|Ψi(X); θi) (12)

maximize
ωi

X

X∈Γ

log P (Yi|Ψi(X),Z; ωi) (13)

Note that the optimization problem nicely breaks down
into the sub-problems of training the individual classifier
for the respective sub-tasks. We can solve each sub-problem
separately given the probabilistic interpretation of the cor-
responding classifier. When the classifier is taken as ‘black-
box’, this can be approximated using the original learning
method provided by the individual black-box classifier
(Equation 5 and Equation 6)

Feed-back Step: In this step, we estimate the values
of the latent variablesZi’s assuming that the parameters
are fixed. We perform MAP inference onZi’s (and not
marginalization). This can be considered as a special variant
of the general EM framework (hard EM, [54]). Using
Equation 10, we get the following optimization problem:

maximize
Z

log P (Y1, . . . , Yn,Z|X; θ̂1, . . . , θ̂n, ω̂1, . . . , ω̂n) ⇔

maximize
Z

n
X

i=1

“

log P (Yi|Ψi(X),Z; ω̂i) + log P (Zi|Ψi(X); θ̂i)
”

(14)
This maximization problem requires that we have access to
the characterization of the individual black-box classifiers
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in a probabilistic form. If the probabilistic interpretations
of the classifiers are known, we can solve the above
function accordingly. Note that Equation 14 is same as
Equation 7 withJ i

1(Ψi(X), Zi; θ̂i) = log P (Zi|Ψi(X); θ̂i)
andJ i

2(Ψi(X),Z, Yi; ω̂i) = log P (Yi|Ψi(X),Z; ω̂i).

In some cases, the classifier log-likelihoods in Equa-
tion 14 actually turn out to be convex. For example, if the
individual classifiers are linear or logistic classifiers, the
minimization problem is convex and can be solved using
gradient descent (or any such method).

However, if the probabilistic interpretations of the clas-
sifiers are unknown, the feedback step requires extra mod-
eling. Some modeling options are provided as follows:

• Case 1: Insight into the vision problem is available. In
this case, one could use the domain knowledge of the
task into the problem to properly modelJ i

1’s andJ i
2’s.

• Case 2: No insight into the vision problem is available
and no internal function of the original classifier is
known. In this case, we formulate theJ i

1’s and J i
2’s

as follows. TheJ i
1 is defined to be a distance function

between the targetZi and the estimated̂Zi, which serves
as a regularization for the first-layer classifiers.

J
i
1(Ψi(X), Zi; θ̂i) =

˛

˛

˛

˛

˛

˛

Zi − Ẑi

˛

˛

˛

˛

˛

˛

2

s.t. Ẑi = optimize
Zi

f
i
infer(Ψi(X), Zi; θ̂i)

(15)

To formulateJ i
2’s, we make a variational approximation

on the output of the second-layer classifier for taski (i.e.,
approximating it as a Gaussian, [55]) to get:

minimize
αi

X

X∈Γ

˛

˛

˛

˛

˛

˛

Ŷi − α
T
i [Ψi(X), Ẑ ]

˛

˛

˛

˛

˛

˛

2

2
(16)

whereαi are parameters of the approximation model.Ŷi

is the actual output of the second layer classifier for the
task i, i.e. Ŷi = optimizeYi

f ′
infer([Ψi(X) Ẑ], Yi; ω̂i).

Then we define theJ i
2’s as follows.

J
i
2(Ψi(X),Z, Yi; ω̂i) =

˛

˛

˛

˛

˛

˛

Yi − α̂
T
i [Ψi(X),Z]

˛

˛

˛

˛

˛

˛

2

2

(17)

Sparsity: Note that the parameterαi is typically ex-
tremely high-dimensional (and increases with the number
of tasks) because the second layer classifiers take as input
the original features as well as outputs of all previous
layers. The learning for the approximation model may
become ill-conditioned. Therefore, we want our model
to select only a few non-zero weights, i.e., only a few
non-zero entries inαi. We do this by introducing the
l1 sparsity in the parameters [56]. So Equation 16 is
extended as follows.

minimize
αi

X

X∈Γ

„

˛

˛

˛

˛

˛

˛

Ŷi − α
T
i [Ψi(X), Ẑ ]

˛

˛

˛

˛

˛

˛

2

2

+ β |αi|

«

(18)

Inference: As introduced in Section 3.2, our inference
procedure consists of two steps: first maximize over hidden
variableZ and then maximize overY . 3

Ẑ = argmax
Z

log P (Z|X, Θ̂) (19)

Ŷ = argmax
Y

log P (Y|Ẑ , X, Ω̂) (20)

3. Another alternative would have been to maximizeP (Y |X) =
P

Z P (Y, Z|X); however, this would require marginalization over the
variableZ which is expensive to compute.

Given the structure of our directed graph, the outputs
for different classifiers on the same layer are independent
given their inputs and parameters. Therefore, Equations 19
and 20 are equivalent to the following:

Ẑi = argmax
Zi

log P (Zi|Ψi(X); θ̂i), i = 1, . . . , n (21)

Ŷi = argmax
Yi

log P (Yi|Ψi(X); Ẑ; ω̂i), i = 1, . . . , n (22)

As we see, Equation 21 and Equation 22 are instantiations
of Equation 3 and Equation 4 in the probabilistic form.

4 TRAINING WITH HETEROGENEOUS
DATASETS
Often real datasets are disjoint for different tasks, i.e, each
datapoint does not have the labels for all the tasks. Our
formulation handles this scenario well. In this section, we
show our formulation for this general case, where we use
Γi as the dataset that has labels only for theith task.

In the following we provide the modifications to the feed-
forward step and the feed-back step while dealing with
disjoint datasets, i.e., data in datasetΓi only have labels for
the ith task. These modifications also allow us to develop
different variants of the model, described in Section 4.1.

Feed-forward Step:Using the feedback step, we can have
Zi’s for all the data. Therefore, we use all the datasets
in order to re-learn each of the first-layer classifiers. If
the internal learning function of the black-box classifier is
additive over the data points, then we have

θ̂i = optimize
θi

X

j

X

X∈Γj

πjf
i
learn(Ψi(X), Zi; θi), (23)

where πj ’s are the importance factors given to different
datasets, and satisfy

∑

j πj = 1. (See Section 4.1 on how
to chooseπj ’s.)

If the internal learning function is not additive over the
data points, we provide an alternative solution here. We
sample a subset of dataXj from each datasetΓj , i.e.Xj ⊆
Γj and combine them into a new setX = [X1, . . . ,Xn].
In X, the ratio of data belonging toXj is equal toπj ,

i.e. |Xj|
|X| = πj , where | · | indicates the number of data-

points. Then we can learn the parameters of the first-layer
classifiers as follows.

θ̂i = optimize
θi

f
i
learn(Ψi(X),Zi; θi), (24)

To re-learn the second-layer classifiers, the only change
made to Equation 6 is that instead of using all data while
optimizing for a particular task, we use only the data-points
that have the ground-truth label for the corresponding task.

ω̂i = optimize
ωi

f
′i

learn([Ψi(X) Z ], Yi; ωi), s.t. X = Γi (25)

Feed-back Step: In this step, we change Equation 7 as
follows. Since a datapoint in the setΓj only has ground-
truth label for thejth task (Yj), we only considerJj

2 in
the second term. However, since this datapoint has outputs
for all the first-layer classifiers using the feed-forward step,
we consider all theJ i

1’s, i = 1, · · · , n. Therefore, in order
to obtain the value ofZ corresponding to each data-point
X ∈ Γj , we have

optimize
Z

n
X

i=1

(

J
i
1(Ψj(X), Zi; θ̂i)

)

+ J
j
2
(Ψj(X),Z, Yj ; ω̂j).

(26)
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4.1 FECCM: Different Instantiations
The parametersπj allow us to formulate three different
instantiations of our model.

• Unified FECCM : In this instantiation, our goal is to
achieve improvements in all tasks with one set of param-
eters{Θ, Ω}. We want to balance the data from different
datasets (i.e., with different task labels). Towards this
goal,πj is set to be inversely proportional to the amount
of data in the dataset of thejth task. Therefore, the
unified FECCM balances the amount of data in different
datasets, based on Equation 23.

• One-goal FECCM: In this instantiation, we setπj = 1
if j = k, andπj = 0 otherwise. This is an extreme setting
to favor the specific taskk. In this case, the retraining of
the first-layer classifiers will only use the feedback from
the Classifierk on the second layer, i.e., only use the
dataset with labels for thekth task. Therefore, FECCM
degrades to a model with only one target task (thekth

task) on the second layer and all the other tasks are only
instantiated on the first layer. Although the goal in this
setting is to completely benefit thekth task, in practice
it often results in overfitting and does not always achieve
the best results even for the specific task (see Table 1 in
Section 6). In this case, we train different models, i.e.
different θi’s andωi’s, for different target tasks.

• Target-Specific FECCM: This instantiation is to opti-
mize the performance of a specific task. As compared to
one-goal FECCM where we manually remove the other
tasks on the second layer, in this instantiation we keep
all the tasks on the second layer and conduct data-driven
selection of the parametersπj for different datasets.
In detail, πj is selected through cross validation on a
hold-out set in the learning process in order to optimize
the second-layer output of a specific task. Since Target-
Specific FECCM still has all the tasks instantiated on the
second layer, the re-training of the first-layer classifiers
can still use data from different datasets (i.e., with
different task labels). Here we train different models, i.e.
different θi’s andωi’s, for different target tasks.

5 SCENE UNDERSTANDING : IMPLEMENTA -
TION
In this section we describe the implementation details of our
instantiation ofFE-CCM for scene understanding. Each
of the classifiers described below for the sub-tasks are
our “base-model” shown in Table 1. In some sub-tasks,
our base-model will be simpler than the state-of-the-art
models (that are often hand-tuned for the specific sub-tasks
respectively). However, even when using base-models in
our FE-CCM , our model will still outperform the state-
of-the-art models for the respective sub-tasks (on the same
standard respective datasets) in Section 6.

In order to explain the implementation details for the
different tasks, we will use the following notation. Let
i be the index of the tasks we consider. We consider 6
tasks for our experiments on scene understanding: scene
categorization (i = 1), depth estimation (i = 2), event

categorization (i = 3), saliency detection (i = 4), object
detection (i = 5) and geometric labeling (i = 6). The inputs
for the jth task at the first layer are given by the low-level
featuresΨj. At the second layer, in addition to the original
featuresΨj, the inputs include the outputs from the first
layer classifiers. This is given by,

Φj = [Ψj Z1 Z2 Z3 Z4 Z5 Z6] (27)
where,Φj is the input feature vector for thejth task on the
second layer, andZi (i = 1, . . . , 6) represents the output
from theith task which is appended to the input to thejth

task on the second layer and so on.

Scene Categorization.For scene categorization, we clas-
sify an image into one of the 8 categories defined by
Torralba et al. [57] tall building, inside city, street, highway,
coast, open country, mountain and forest. We evaluate the
performance by measuring the rate of incorrectly assigning
a scene label to an image on the MIT outdoor scene dataset
[57]. The feature inputs for the first-layer scene classifier
Ψ1 ∈ R

512 is the GIST feature [57], extracted at4 × 4
regions of the image, on 4 scales and 8 orientations.

We use an RBF-Kernel SVM classifier [58], as the first-
layer scene classifier, and a multi-class logistic classifier
for the second layer. The output of the first-layer scene
classifierZ1 ∈ R

8 is an 8-dimensional vector where each
element represents the log-odds score of the corresponding
image belonging to a scene category. This 8-dimensional
output is fed to each of the second-layer classifiers.

Depth Estimation. For the single image depth estimation
task, we estimate the depth of every pixel in an image.
We evaluate the estimation performance by computing the
root mean square error of the estimated depth with respect
to ground truth laser scan depth using the Make3D Range
Image dataset [59, 60]. We uniformly divide each image
into 55 × 305 patches as [59]. The feature inputs for the
first-layer depth estimationΨ2 ∈ R

104 are features which
capture texture, color and gradient properties of the patch.
This is obtained by convolving the image with Laws’ masks
and computing the energy and Kurtosis over the patch along
with the shape features as described by Saxena et al. [59].

We use a linear regression for the first-level and second-
level instantiation of the depth estimation module. The
output of the first-layer depth estimationZ2 ∈ R+ is the
predicted depth of each patch in the image. In order to feed
the first-layer depth output to the second-layer classifiers,
for the scene categorization and event categorization tasks,
we use a vector with the predicted depth of all patches in
the image; for the other tasks, we use the 1-dimensional
predicted depth for the patch/pixel/bounding-box, etc.

Event Categorization: For event categorization, we clas-
sify an image into one of the 8 sports events as defined by
Li et al. [46]: bocce, badminton, polo, rowing, snowboard-
ing, croquet, sailing and rock-climbing. For evaluation, we
compute the rate of incorrectly assigning an event label
to an image. The feature inputs for the first-layer event
classifier Ψ3 ∈ R

43 is a 43-dimensional feature vector,
which includes the top 30 PCA projections of the 512-
dimensional GIST features [61], the 12-dimension global
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color features (mean and variance of RGB and YCrCb color
channels over the entire image), and a bias term.

We use a multi-class logistic classifier on each layer
for event classification. The output of the first-layer event
classifierZ3 ∈ R

8 is an 8-dimensional vector where each
element represents the log-odd score of the corresponding
image belonging to a event category. This 8-dimensional
output is feed to each of the second-layer classifiers.

Saliency Detection.The goal of the saliency detection task
is to classify each pixel in the image as either salient or
non-salient. We use the saliency detection dataset used by
Achanta et. al. [62] for our experiments. The feature inputs
for the first-layer saliency classifierΨ4 ∈ R

4 includes the
3-dimensional color-offset features based on the Lab color
space as described by Achanta et al. [62] and a bias term.

We use a logistic model for the saliency estimation
classifiers on both layers. The output of the first-layer
saliency classifierZ4 ∈ R is the log-odd score of a
pixel being salient. In order to feed the first-layer saliency
detection output to the second-layer classifiers, for the scene
categorization and event categorization tasks, we form a
vector with the predicted saliency of all the pixels in the im-
age; for the other tasks, we use the 1-dimensional average
saliency for the corresponding pixel/patch/bounding-box.

Object Detection. We consider the following object cate-
gories: car, person, horse and cow. We use the train-set and
test-set of PASCAL 2006 [63] for our experiments. Our
object detection module builds on the part-based detector
of Felzenszwalb et. al. [64]. We first generate 5 to 100
candidate windows for each image by applying the part-
based detector with a low threshold (over-detection). The
feature inputs for the first-layer object detection classifier
Ψ5 ∈ R

K are the HOG features extracted based on the
candidate window as [65] plus the detection score from
the part-based detector [64].K depends on the number of
scales to be considered and the size of the object template.

We learn an RBF-kernel SVM model as the first layer
classifier. The classifier assigns each window a+1 or
0 label indicating whether the window belongs to the
object or not. For the second-layer classifier, we learn a
logistic model over the feature vector constituted by the
outputs of all first-level tasks and the original HOG feature.
We use average precision to quantitatively measure the
performance. The output of the first-layer object detection
classifierZ5 ∈ R

4 are the estimated 0 or 1 labels for a
region to belong to the 4 object categories we consider. In
order to feed the first-layer object detection output to the
second-layer classifiers, we first generate a detection map
for each object. Pixels inside the estimated positive boxes
are labeled as “+1”, otherwise they are labeled as “0”. For
scene categorization and event categorization on the second
layer, we feed all the elements on the map; for the other
tasks, we use the 1-dimensional average value on the map
for the corresponding pixel/patch/bounding-box.

Geometric labeling. The geometric labeling task refers
to assigning each pixel to one of three geometric classes:
support, vertical and sky, as defined by Hoiem et al. [33].

For evaluation, we compute the accuracy of assigning the
correct geometric label to a pixel. The feature inputs for
the first-layer geometry labeling classifierΨ6 ∈ R

52 are the
region-based features as described by Hoiem et al. [33].

We use the dataset and the algorithm by [33] as the first-
layer geometric labeling module. To reduce the computation
time, we avoid the multiple segmentations and instead use
a single segmentation with 100 segments per image. We
use a logistic model as the second-layer classifier. The
output of the first-layer geometry classifierZ6 ∈ R

3 is
a 3-dimensional vector with each element representing the
log-odd score of the corresponding pixel belonging to a
geometric category. In order to feed the first-layer geom-
etry output to the second-layer classifiers, for scene/event
categorization we form a vector with the predicted scores
of all pixels; for the other tasks we use the 3-dimensional
vector with each element representing the average scores
for the corresponding pixel/patch/bounding-box.

6 EXPERIMENTS AND RESULTS
6.1 Experimental Setting
The proposed FE-CCM model is a unified model which
jointly optimizes for all the sub-tasks. We believe this is
a powerful algorithm in that, while independent efforts
towards each sub-task have led to state-of-the-art algorithms
that require intricate modeling for that specific sub-task,the
proposed approach is a unified model which can beat the
state-of-the-art performance in each sub-task and, can be
seamlessly applied across different applications.

We evaluate our proposed method on combining six tasks
introduced in Section 5. In our experiment, the training of
FE-CCM takes 4-5 iterations. For each of the sub-tasks
in each of the domains, we evaluate our performance on
the standard dataset for that sub-task (and compare against
the specifically designed state-of-the-art algorithm for that
dataset). Note that, with such disjoint yet practical datasets,
no image would have ground truth available for more than
one task. Our model handles this well.

In experiment we evaluate the following algorithms as
shown in Table 1,

• Base model: Our implementation (Section 5) of each
sub-task, which serves as a base model for ourFE-
CCM . (The base model uses less information than
state-of-the-art algorithms for some sub-tasks.)

• All-features-direct: A classifier that takes all the fea-
tures of all sub-tasks, appends them together, and
builds a separate classifier for each sub-task.

• State-of-the-art model: The state-of-the-art algorithm
for each sub-task respectively on that specific dataset.

• CCM: The cascaded classifier model by Heitz
et al. [11], which we re-implement for six sub-tasks.

• FE-CCM (unified): This is our proposed model. Note
that this isone single modelwhich maximizes the joint
likelihood of all the sub-tasks.

• FE-CCM (one goal): In this case, we have only one
sub-task instantiated on the second layer, and the goal
is to optimize the outputs of that sub-task. We train a
specific one-goal FE-CCM for each sub-task.



9TABLE 1
Summary of results for the SIX vision tasks. Our method improves performance in every single task. (Note: Bold face corresponds to our

model performing equally with or better than state-of-the-art.)
Event Depth Scene Saliency Geometric Object detection

Model Categorization Estimation Categorization Detection Labeling Car Person Horse Cow Mean
(% Accuracy) (RMSE in m) (% Accuracy) (% Accuracy) (% Accuracy) (% Average precision)

Images in testset 1579 400 2688 1000 300 2686
Chance 22.5 24.6 22.5 50 33.3 - - - - -

Our base-model 71.8 (±0.8) 16.7 (±0.4) 83.8 (±0.2) 85.2 (±0.2) 86.2 (±0.2) 62.4 36.3 39.0 39.9 44.4
All-features-direct 72.7 (±0.8) 16.4 (±0.4) 83.8 (±0.4) 85.7 (±0.2) 87.0 (±0.6) 62.3 36.8 38.8 40.0 44.5
State-of-the-art 73.4 16.7 (MRF)4 83.8 82.5 (±0.2) 88.1 61.5 36.3 39.2 40.7 44.4
model (reported) Li [46] Saxena [59] Torralba [58] Achanta [62] Hoiem [33] Felzenswalb et. al. [38] (base)
CCM [11] 73.3 (±1.6) 16.4 (±0.4) 83.8 (±0.6) 85.6 (±0.2) 87.0 (±0.6) 62.2 37.0 38.8 40.1 44.5
(our implementation)

FE-CCM
(unified) 74.3 (±0.6) 15.5 (±0.2) 85.9 (±0.3) 86.2 (±0.2) 88.6 (±0.2) 63.2 37.6 40.1 40.5 45.4
FE-CCM
(one goal) 74.2 (±0.8) 15.3 (±0.4) 85.8 (±0.5) 87.1 (±0.2) 88.6 (±0.3) 63.2 37.9 40.1 40.7 45.5
FE-CCM
(target specific) 74.7 (±0.6) 15.2 (±0.2) 86.1 (±0.2) 87.6 (±0.2) 88.9 (±0.2) 63.2 38.0 40.1 40.7 45.5
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Fig. 3. Results for the six tasks in scene understanding. Top: the performance for event categorization, scene categorization, saliency
detection, geometric labeling, and depth estimation. Bottom: the average performance for object detection and the performance for the
detection of individual object categories: car, person, horse, and cow. Each figure compares four methods: all-features-direct method, state-
of-the-art methods, CCM, and the proposed FE-CCM method.

• FE-CCM (target specific): In this case, we train a
specific FE-CCM for each sub-task, by using cross-
validation to estimateπj ’s in Equation 23. Different
values forπj ’s result in different parameters learned
for each FE-CCM.

Note that both CCM and All-features-direct use information
from all sub-tasks, and state-of-the-art models also use care-
fully designed models that implicitly capture information
from the other sub-tasks.

6.2 Datasets
The datasets used are mentioned in Section 5, and the
number of test images in each dataset is shown in Table 1.
For each dataset we use the same number of training
images as the state-of-the-art algorithm (for comparison).
We perform 6-fold cross validation on the whole model
with 5 of 6 sub-tasks to evaluate the performance on each
task. We do not do cross-validation on object detection as
it is standard on the PASCAL 2006 [63] dataset (1277 train
and 2686 test images respectively).

6.3 Results
To quantitatively evaluate our method for each of the sub-
tasks, we consider the metrics appropriate to each of the
six tasks in Section 5. Table 1 and Figure 3 show that FE-
CCM not only beats state of the art inall the tasks but also
does it jointly asone single unified model.

In detail, we see that all-features-direct improves over
the base model because it uses features from all the tasks.

The state-of-the-art classifiers improve on the base model
by explicitly hand-designing the task specific probabilistic
model [46, 59] or by using adhoc methods to implicitly use
information from other tasks [33]. Our FE-CCM model,
which is a single model that was not given any manually
designed task-specific insight, achieves a more significant
improvement over the base model.

We also compare the three instantiations of FE-CCM
in Table 1 (the last three rows). We observe that the
target-specific FE-CCM achieves the best performance, by
selecting a set ofπj ’s to optimize for each task inde-
pendently. Though the unified FE-CCM achieves slightly
worse performance, it jointly optmizes for all the tasks by
training only one set of parameters. The performance of
one-goal FE-CCM is less stable compared to the other two
instantiations. It is mainly because the first-layer classifiers
only gain feedback from the specific task on the second
layer in one-goal FE-CCM, which easily causes overfitting.

We note that our target-specific FE-CCM, which is
optimized for each task independently and achieves the best
performance, is a more fair comparison to the state-of-the-
art because each state-of-the-art model is trained specifi-
cally for the respective task. Furthermore, Figure 3 shows
the results for CCM (which is a cascade without feedback
information) and all-features-direct (which uses features

4. The state-of-the-art method for depth estimation in [59]follows a
slightly different testing procedure. In that case, our target-specific FE-
CCM method achievesRMSE = 15.3.
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Fig. 4. Results showing improvement using the proposed model. From top to bottom: Depth estimation, Saliency detection, Object
detection, Geometric labeling. All depth maps in depth estimation are at the same scale (black means near and white means far); Salient
region in saliency detection are indicated in cyan; Geometric labeling: Green=Support, Blue=Sky and Red=Vertical (Best viewed in color).

(a) (b) (c) 

Fig. 5. Confusion matrix for (a) Event categorization; (b) Scene
categorization; (c) Geometric labeling. All the results are gained
with the proposed FE-CCM method. The average accuracy achieved
by the proposed FE-CCM model outperforms the state-of-the-art
methods for each of these tasks, as listed in Table 1.

from all the tasks). This indicates that the improvement is
strictly due to the proposed feedback and not just because
of having more information.

We show some visual improvements due to the proposed
FE-CCM in Figure 4. In comparison to CCM, FE-CCM
leads to better depth estimation of the sky and the ground,
and it leads to better coverage and accurate labeling of
the salient region in the image, and it also leads to better
geometric labeling and object detection. Figure 5 also
provides the confusion matrices for the three tasks: scene
categorization, event categorization, geometric labeling.

Figure 6 provides scatter plots of the performance differ-
ence for each image between the unified FE-CCM method
and the all-features-direct method, respectively for the
tasks of geometric labeling, saliency detection, and depth
estimation. We note that for all three tasks, the unified FE-
CCM outperforms the all-features-direct method on most
images. For geometric labeling and saliency detection, the
improvement from the unified FE-CCM method is mainly
due to large improvements on some images. For depth
estimation, the improvement is scattered over many images.

The cause of improvement.We have shown improvements
of FE-CCM in Table 1 under the situation of heterogeneous

TABLE 2
Summary of results for combining scene categorization and object

detection, with partially-labeled datasets and fully-labeled datasets.
Scene Categorization Object Detection

Model (% accuracy) (% mean AP)
partial-labeled / full-labeled partial-labeled / full-labeled

Our base-model 45.6 / 47.5 67.6 / 70.7
All features direct 46.8 / 49.1 71.2 / 72.5
CCM [11] 50.8 / 52.3 74.0 / 76.1
FE-CCM (unified) 54.2 / 54.8 77.5 / 77.9

datasets. The improvement can be caused by one or both
of the following reasons: (1) the feedback process finds
better error modes for the first-layer classifiers; (2) the
feedback generates additional “labels” to retrain the first-
layer classifiers. In order to analyze this, we consider the
two tasks of scene recognition and object detection on the
DS1 dataset in [11], which contains ground-truth labels for
both the tasks. We compare the various methods under two
settings: (1) train with the fully-labeled data; (2) train with
only the scene labels for one half of the training data and
only the object labels for the second half. Table 2 compares
the performance of training with partially-labeled datasets
and the performance of different methods under these two
settings. The experiments are performed using 5-fold cross
validation. The unified FE-CCM method outperforms the
other methods under both partially-labeled and fully-labeled
situations. We note that all methods listed perform better
when full labels are provided. In fact, FE-CCM achieves
close performance in both settings. We also note that the
FE-CCM method trained with partially-labeled datasets
outperforms the CCM method trained with fully-labeled
datasets, which indicates that the improvement achieved by
the FE-CCM method is not simply from generating more
labels for training the first-layer classifiers, but also dueto
finding useful modes for the first-layer classifiers.

Figure 7 illustrates the first-layer outputs of a test image,
respectively at initialization and at the5th iteration. Our
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Fig. 6. Performance difference between the proposed unified FE-CCM method and the all-features-direct method for each test image,
respectively for the tasks of geometric labeling, saliency detection, depth estimation, on one of the cross-validation folds.
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Fig. 7. Illustration of the FE-CCM first-layer outputs for a single image. (a) the input image from the sports-event dataset. Its groundtruth
event label is “Bocce”. (b-g)Outputs of the first-layer classifiers, at initialization (top row) and at the 5th iteration (bottom row). (h) Outputs
of the second-layer event classifier. Note that at initialization the first-layer classifiers are trained using ground-truth labels, i.e. the same as
CCM. In (b)(c)(d)(e)(h), Red=High-value, Blue=low-value. In (f), Blue=Ground, Green=Vertical, Red=Sky. In (g) Red=Object Presence. (Best
viewed in color.)

initialization is the same as CCM, i.e., using ground-
truth labels to train the first-layer classifiers. We note that
with feedback, the first-layer output shifts to focus on
more meaningful modes, e.g., At initialization, the event
classifier has widespread confusion with other categories.
With feedback, the event classifier turns to be confused
with only the ’rock-climbing’ and ’croquet’ events which
are more similar to ’bocce’. Moreover, the first-layer scene,
depth, and object classifiers also give more meaningful
predictions while trained with feedback. With better first-
layer predictions, our FE-CCM correctly classifies the event
as ’bocce’, while CCM misclassifies it as ’rowing’.

6.4 Discussion
FE-CCM allows each classifier in the second layer to learn
which information from the other first-layer sub-tasks is
useful, and this can be seen in the learned weightsΩ for
the second-layer. We provide a visualization of the weights
for the six vision tasks in Figure 8(a). We see that the
model agrees with our intuitions that large weights are
assigned to the outputs of the same task from the first layer
classifier (see the large weights assigned to the diagonals
in the categorization tasks), though saliency detection isan
exception which depends more on its original features (not
shown here) and the geometric labeling output. We also
observe that the weights are sparse. This is an advantage of
our approach since the algorithm automatically figures out
which outputs from the first level classifiers are useful for
the second level classifier to achieve the best performance.

Figure 8(b) provides a closer look to the positive weights
given to the various outputs for a second-level geomet-
ric classifier. We observe that large positive weights are
assigned to “mountain”, “forest”, “tall building”, etc. for
supporting the geometric class “vertical”, and similarly
“coast”, “sailing” and “depth” for supporting the “sky”

class. These illustrate some of the relationships the model
learns automatically without any manual intricate modeling.

Figure 8(c) visualizes the weights given to the depth
attributes (first-layer depth outputs) for the task of event
categorization. Figure 8(d) shows the same for the task
of scene categorization. We see that the depth plays an
important role in these tasks. In Figure 8(c), we observe that
most event categories rely on the middle part of the image,
where the main objects of the event are often located.
E.g., most of the “polo” images have horses and people
in the middle of the image while many “snowboarding”
images have people jumping in the upper-middle part. For
scene categorization, most of the scene categories (e.g.,
coast, mountain, open country) have sky in the top part,
which is not as discriminative as the bottom part. In scene
categories of tall buildings and street, the upper part of the
street consists of buildings, which discriminates these two
categories from the others. Not surprisingly, our method
had automatically figured this out (see Figure 8(d)).

Stability of the FE-CCM algorithm: In this paper, we
have presented results for six sub-tasks. In order to find
out how our method scales with different combination and
number of sub-tasks, we have tried several combinations,
and in each case we get consistent improvement in each
sub-task. For example, in our preliminary experiments, we
combined depth estimation and scene categorization and
our reduction in error are 12.0% and 13.2% respectively.
Combining scene categorization and object detection gives
us 15.4% and 10.2% respective improvements (Table 2).
We then combined four tasks: event categorization, scene
categorization, depth estimation, and saliency detection, and
got improvements in all these sub-tasks [22]. Finally, we
also combined different tasks for robotic applications, and
the performance improvement was similar.
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Fig. 8. (a) The absolute values of the weight vectors for second-level classifiers, i.e. ω. Each column shows the contribution of the various
tasks towards a certain task. (b) Detailed illustration of the positive values in the weight vector for a second-level geometric classifier. (c)(d)
Illustration of the importance of depths in different regions for predicting different events (c) and scenes (d). An example image for each class
is also shown above the map of the weights. (Note: Blue is low and Red is high. Best viewed in Color).

Image Depth map Grasping point  

(yellow) 

Grasping point detection 

Cereal bowl Eraser Tea cup Book Martini glass Pencil 

Object classification 

Fig. 9. Examples in the dataset used for the grasping robot
experiments. The two tasks considered were a six-class, object
classification task and grasping point detection task.

7 ROBOTIC APPLICATIONS
In order to show the applicability of our FE-CCM to
different scene understanding domains, we also used the
proposed method in multiple robotic applications.

7.1 Robotic Grasping
Given an image and a depthmap (Figure 9), the goal of the
learning algorithm in a grasping robot is to select a point
to grasp the object (this location is called the grasp point,
[66]). It turns out that different categories of objects demand
different strategies for grasping. In prior work, Saxena et
al. [66, 67] did not use object category information for
grasping. In this work, we use our FE-CCM to combine
object classification and grasping point detection.

Implementation: We work with the labeled synthetic
dataset by Saxena et al. [66] which spans 6 object categories
and also includes an aligned pixel level depth map for each
image, as shown in Figure 9. The six object categories
include spherically symmetric objects such as cerealbowl,
rectangular objects such as eraser, martini glass, books,
cups and long objects such as pencil.

For grasp point detection, we compute image and
depthmap features at each point in the image (using codes
given by [66]). The features describe the response of the
image and the depth map to a bank of filters (similar
to Make3D) while also capturing information from the
neighboring grid elements. We then use a regression over
the features. The output is a confidence score for each point
being a good grasping point. In an image, we pick the point
with the highest score as the grasping point.

For object detection, we use a logistic classifier to
perform the classification. The output of the classifier is a 6-

TABLE 3
Summary of results for the the robotic grasping experiment. Our

method improves performance in every single task.

Graping point Object
Model Detection Classification

(% accuracy) (% accuracy)
Images in testset 6000 1200
Chance 50 16.7

All features direct 87.7 45.8
Our base-model 87.7 45.8
CCM (Heitz et. al.) 90.5 49.5
FE-CCM 92.2 49.7

Fig. 10. Left: the grasping point detected by our algorithm. Right:
Our robot grasping an object using our algorithm.

dimensional vector representing the log-odds score for each
category. The final classification is performed by assigning
the image to the category with the highest score.

Results: We evaluate our algorithm on a dataset published
in [66], and perform cross-validation to evaluate the perfor-
mance on each task. We use 6000 images for grasping point
detection (3000 for training and 3000 for testing) and 1200
images for object classification (600 for training and 600 for
testing). Table 3 shows the results for our algorithm’s ability
to predict the grasping point, given an image and the depths
observed by the robot using its sensors. We see that our
FE-CCM obtains significantly better performance over all-
features-direct and CCM (our implementation). Figure 10
shows an example of our robot grasping an object.

7.2 Object-finding Robot
Given an image, the goal of an object-finding robot is
to find a desired object in a cluttered room. As we have
discussed earlier, some types of scenes such as living room
are more likely to have objects (e.g., shoes) than other
types of scenes such as kitchen. Similarly, office scenes
are more likely to contain tv-monitors than kitchen scenes.
Furthermore, it is also intuitive that shoes are more likely
to appear on the supportive surface such as floor, instead
of the vertical surface such as the wall. Therefore, in this
work, we use our FE-CCM to combine object detection
with indoor scene categorization and geometric labeling.

Implementation: For scene categorization, we use the
indoor scene subsets in the Cal-Scene Dataset [68] and
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Fig. 11. Left: the shoe-finding robot, which has a camera to take
photos of a scene. Right: the shoed detected using our algorithm.

classify an image into one of the four categories: bedroom,
living room, kitchen and office. For geometric labeling,
we use the Indoor Layout Data [69] and assign each
pixel to one of three geometry classes: ground, wall and
ceiling. We use the same features and classifiers for scene
categorization as in Section 5.

For object detection, we use the PASCAL 2007 Dataset
[70] and our own shoe dataset to learn detectors for four
object categories: shoe, dining table, tv-monitor, and sofa.
We first use the part-based object detection algorithm in
[38] to create candidate windows, and then use the same
classifiers as described in Section 5.

Results: We use this method to build a shoe-finding robot,
as shown on Figure 11-left. With a limited number of
training images (86 positive images in our case), it is hard
to train a robust shoe detector to find a shoe far away
from the camera. However, using our FE-CCM model, the
robot learns to leverage the other tasks and performs more
robust shoe detection. Figure 11-right shows a successful
detection. For more details and videos, please see [71].

8 CONCLUSIONS
We propose a method for combining existing classifiers for
different but related tasks in scene understanding. We only
consider the individual classifiers as a ‘black-box’ (thus not
needing to know the inner workings of the classifier) and
propose learning techniques for combining them (thus not
needing to know how to combine the tasks). Our method
introduces feedback in the training process from the later
stage to the earlier one, so that a later classifier can provide
the earlier classifiers information about what error modes
to focus on, or what can be ignored without hurting the
joint performance.

Our extensive experiments show that our unified model (a
single FE-CCM trained for all the sub-tasks) improves per-
formance significantly acrossall the sub-tasks considered
over the respective state-of-the-art classifiers. We show that
this was the result of our feedback process. The classifier
actually learns meaningful relationships between the tasks
automatically. We believe that this is a small step towards
holistic scene understanding.
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