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1. Introduction

Acoustical noise can sometimes disturb or even harm nearby people. Hence, it is necessary to find ways to reduce such unwanted noise. Traditionally, passive means (i.e., physical barriers) to attenuate the noises have been employed. Unfortunately, the barriers are not effective to isolate lower frequency noises; and to achieve significant reduction the barriers have to be rather bulky. In effect, the passive barrier is not a cost-effective solution to reducing low-frequency noises (for example, noises that come from industrial blowers, diesel engines, transformers, earth-moving machines, and propeller-driven aircraft.) 

Because of that shortcoming of the physical barriers, active means to reduce low frequency noise (less than 500-1000 Hertz) have been investigated by researchers in the field of adaptive acoustic control. Active noise control (ANC) promises a good reduction of the noises in the form of a small package of a DSP controller, microphone(s), and loudspeaker(s). For the better or the worse, the ANC systems are effective only when the intended noise is periodic, and so random noises like the white noise will not be reduced. 

There are different ANC schemes that have been developed. My project is involved with the implementation of one of the schemes that is called “single-channel adaptive feedback ANC.” The implementation was on a Texas Instruments TMS320C54 evaluation module (EVM) board; in addition to this, I used a microphone and a loudspeaker.

2. Background

2.1 Adaptive feedback ANC basics

The single-channel adaptive feedback ANC system works by processing the acoustical noise that we would like to reduce (the “target” noise), and then it produces an anti-noise which is sent to the air, thus attenuating the target noise at a particular point in space (in our case this is the space adjacent to the error microphone). Therefore, the goal of the ANC system is to minimize the signal received by the error microphone. 
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Figure 2.1 The Single-Channel Feedback ANC System; a generalized concept.


The anti-noise waveform is similar to that of the target noise, except that its phase is reversed by 180 degrees. If these waveforms are added together, they will result in a much weaker residual waveform (this waveform should be zero amplitude if the anti-noise matches perfectly with the target noise.) In Figure 2.1, the residual waveform is what is picked up by the microphone. 
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Figure 2.2 Physical description of active noise control

The feedback ANC system produces an anti-noise by predicting the incoming target noise. This is not different from an adaptive system identification scheme; to achieve this, the system uses the Least-Mean Squares (LMS) algorithm to update an adaptive filter’s coefficients which is the heart of ANC signal processing. 

As shown in Figure 2.3, the target noise d[n] is not available because it is intended to be canceled by the anti-noise. Our goal is that we want to create an anti-noise y[n] which predicts the inaccessible d[n]. Therefore one task of the feedback ANC algorithm is to estimate d[n] and use it as the reference signal x[n] for the adaptive filter W(z). (Notice that y[n] is in the electrical domain, and in order to cancel d[n] it must go through the speaker and the air: this is modeled by secondary path filter S(z).)  
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Figure 2.3 Simplified block diagram of single-channel feedback ANC system.

In Z-domain, the target signal can be expressed as
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where E(z) is the error signal picked up by the microphone, and Y(z) is the anti-noise generated by the adaptive W(z) filter. If the secondary path S(z) is measurable (expressed as S^(z)), then we can estimate the target noise d[n] (let us call this the synthesized x[n]).
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 EMBED Equation.3  [image: image7.wmf] (2)

Therefore, the algorithm achieves its first task, which is to regenerate the reference signal x[n] ( d^[n]. 

For completeness, in time domain (2) is expressed as
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where s^m, m = 0, 1, … , M-1 are the secondary-path FIR filter coefficients.

 
The next task is to create the anti-noise y[n] from x[n] such that the error signal e[n] is minimized. We employ the filtered-x LMS algorithm to do this, however in this paper I will not discuss why the FXLMS algorithm works. 
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Figure 2.4 Adaptive feedback ANC system using the FXLMS algorithm

The anti-noise is generated as
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where w​l, l = 0, 1, … , L-1 are the coefficients of W(z).

These coefficients are updated according to the filtered-x LMS algorithm, which is expressed as
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where ( is the step size, and
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is the filtered x[n]. Note that only finite impulse response (FIR) filters are used in the ANC algorithm in order to guarantee linear phase – I used circular buffers to implement the FIR filters.

Thus the adaptive ANC algorithm is now complete, except for one part, that is how we can model the secondary path filter S^(z).

2.2 Off-line secondary-path modeling

There are two distinctive techniques to model S^(z), off-line and on-line. The on-line modeling technique should prove to be more flexible because it models the secondary path while the ANC is in operation. On the other hand, although the off-line modeling will make a functional system, it models the path only once before the ANC algorithm starts, hence any change in the path while the ANC algorithm is active will degrade its noise-reducing performance. 

In my project I employed the off-line modeling because it will not add the computational complexity of the ANC algorithm – the TI ‘C54 is a low-powered, non-superscalar processor, and so we want to avoid extra computational burden as much as possible in order to achieve the best performance (this is especially true since I used the ‘C54 C compiler to generate the ANC code, instead of doing low-level programming with the assembly language.) The block diagram of the off-line secondary-path modeling is shown as follows,
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Figure 3.8 Experimental setup for off-line secondary-path modeling.




Figure 2.5 Off-line secondary-path modeling experimental setup.

(Figure taken from Kuo and Morgan (1996).)

As Kuo and Morgan (1996) says, the white noise is an ideal broadband training signal in system identification, because it has a constant spectral density at all frequencies. Using an internally-generated white noise to perform the modeling is desirable because the required measurement time can be quite short relative to the time required for repetitive measurements using other waveforms Kuo and Morgan (1996).

These are the steps in the off-line secondary-path modeling algorithm:

1. Pick a value in from the pre-generated random noise vector, and assign it as x[n].

2. Send x[n] to the speaker.

3. Get d[n] from the microphone

4. Apply the LMS algorithm as follows:

· Compute adaptive filter S^(z) output
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· Compute the error signal
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· Update coefficients according to the LMS algorithm
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 EMBED Equation.3  [image: image17.wmf]      (9)

5. Go to 1 until the algorithm converges (i.e., e[n] is minimized.)

After convergence, S^(z) is fixed and used in the single-channel adaptive feedback ANC algorithm described earlier.

3. ANC Implementation

3.1 Preliminary works

3.1.1 Creating the C framework

Before I could implement the ANC algorithm on the ‘C54 EVM board, I had to create a C-platform for the EVM board that acted as a framework for the algorithm. Additionally, the C-platform would be able to support the duplex communication between the EVM board and the host PC (the EVM board was attached in the PC’s expansion slot.) 

I planned at the beginning of my project that the EVM board would do all of the signal processing, and the PC would only act as the user’s interface and it would download the processed data from the EVM board after the ANC operation is done – this data would then be processed with MATLAB to analyze the noise-reduction performance of the ANC system.
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Figure 3.1 Hardware Setup

Moreover, it is necessary to mention that while the system operates, there are two programs running concurrently, the host PC side, and the EVM side, both of which could be coded in C language. 

Now we discuss how I created the EVM C-platform: there was an assembly code provided by Texas Instruments that did sampling, playback, and simple delay. I determined that the C-platform should have similar sampling and playback functions that will be callable from C. So I learned the ‘C54 hardware and software in order to create these C-functions. It turned out that I had to understand how hardware interrupts work in ‘C54. Eventually, after going through many obstacles I managed to create the functions, as well as the rest of the C-environment such as a run-time setup function. Furthermore, the ‘C54 low-level debugger helped me to create the ‘C54 C-programming environment.

3.1.2 MATLAB simulations
The second preliminary work was to simulate the single-channel adaptive feedback ANC described in Background. I implemented the algorithm as MATLAB scripts. I found that the algorithm could cancel a sinusoidal noise completely after algorithm convergence, however, it could only halve the amplitude of a recorded fan-noise though it “blended” the noise so that it looked like a white-noise. Also, I tried many different adaptive filter lengths and step sizes, as well as different target noise strengths.

Although the MATLAB simulations could not simulate cancellation in the air, and also it was not a real-time system, they did give me a rough estimation of the performance that I should expect from a working ANC system using the EVM board.

3.1.3 ANC on PC

Just before I embarked on coding the ANC on the EVM board, my advisor suggested that I should first try to make the ANC work on the PC, because the PC had less constraints such as I could do floating-point computations with it. At this point the EVM served only as a data sampler. I determined that the PC-version of the ANC algorithm should be able to cancel noise to the air, but at this point I had a problem with sending data back to the EVM board and hence the speaker. The resulting system was not real-time, and just like the MATLAB simulations, I did the noise cancellation in software. 

3.2 Implementing ANC on the ‘C54 EVM board

After the preliminary works were done, I started to modify the PC-version ANC code such that it would run on the EVM board. The biggest modification that I had to accomplish was how to do fractional number computations while the ‘C54 is a 16-bit word processor, meaning that it is designed for fixed-point computation, as opposed to floating-point. My advisor gave me an idea on how to think about this, and I decided that it was also necessary to explore how the ‘C54 architecture handles multiplications  (The feedback ANC algorithm does not require fractional-number division. Moreover, no extra operation needed after fixed-point addition/subtraction to get the correct results.) Due to the multiplication architecture of the ‘C54, I had to arithmetically shift right by fifteen positions after every fixed-point multiplication. 

As a detour, I used a fixed-point implementation called Q15, meaning that the decimal point is placed on the right of the sign-bit (the leftmost bit of the word.) The Q15 numerical representation gives the best fractional number resolution that is possible with 16-bit word processors like the ‘C54 [SPRA 480.] 

I should mention that I did not implement the off-line secondary-path modeling (see Background) while I was doing the MATLAB simulations and PC-version of the ANC – I only coded this for the EVM board. From now on, we refer this modeling as ANC1, and the actual noise-reducing algorithm as ANC2. 

I tested ANC1, but it seemed to have a problem with random-number (white noise) generation – I discovered the cause later on. Therefore I worked on making ANC2 to function, and then went back with ANC1 to solve the above problem. 

After ANC1 and ANC2 were operational, my advisor pointed out that the performance of my ANC system should not degrade when the target noise had a small DC-bias. From Kuo and Morgan (1996) we inferred that in Figure 2.4 we should convolve the error signal e[n] with a high-pass filter before we added it with the filtered y[n], and so I did that.

Besides putting these filter in place, I determined that I should lower the sampling rate of the real-time system down to 2 kHz, previously it was 7.2 kHz. There is a huge benefit of using this low sampling rate: more computational time for each sample, and therefore I could use longer filter-length. In turn, longer filter-length combined with low sample rate should enable my system to reduce 25 Hz noises (2000 Hz / 80). However, by doing this I risked aliasing because the analog interface circuit’s (AIC) low-pass filter minimum bandwidth is 3.6 kHz. Therefore, for correct operation of my system, the frequency of the target noise must be between 25 Hz to 1000 Hz (half the sampling rate – according to the sampling theorem.) But this range is what we should expect from an ANC system (see Introduction), although probably we want even lower figure than 25 Hz to handle very low-frequency noises such as a diesel engine at idle.

By this point, I had finished building the final real-time ANC system with the ‘C54 EVM board, except that I had not tested its performance. So this was the final step that I did – I had to test my system many times with different strengths and kinds of target noises, step-sizes, filter-lengths, and see how they relate with each other. 

4. Results 

4.1 General operational characteristics

I discovered that my ANC system was very sensitive to changes, especially with respect to changes in strength of a target noise. This means that I have to apply the correct loudness in the target noise with a matching step-size (, otherwise the LMS algorithm would blow up – this has been encountered during the MATLAB simulations. Larger step-size means higher risk of blowing, while smaller size means slower convergence of the algorithm. Therefore, there is a tradeoff while choosing the step-size. As Kuo and Morgan (1996) suggests, the step size is inversely related with the power of the target signal and the length of the adaptive filter W(z) – my experimental tests were consistent with this fact. 

Lastly, after many testing runs I came with a step size that should be able to reduce a certain power-level in the target noises. As a matter of fact, these noises were pre-generated and were sent to another loudspeaker that was attached directly to the PC’s sound card. 

4.2 Quantitative Performance Analysis

Now we discuss the performance of the ANC system – how well it can reduce noises. I used three different noises to test the noise-reducing performance of the ANC system: sinusoid, recorded fan noise, and autoregressive tone. Characteristically for my ANC system implementation, meanwhile reducing the intended noise it adds some other noises at nearby locations in the spectrum, although they are not strong.

From the following MATLAB plots, we would be able to inspect the performance of my system, the first one is a pure sinusoidal tone.
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Figure 4.1(a) Spectrum of the sinusoid
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Figure 4.1(b) Spectrum of the sinusoid in dB scale


We see that for the case of sinusoid my system cuts down the peak at ~250 Hz by almost 20 dB, except that there are new noises around the peak -- this is especially visible in the dB scale. This trend will reappear in the fan and autoregressive cases. The following are the spectrums of the fan noise and the autoregressive tone.

[image: image21.jpg]Cormparison of the fan noise in frequency domain

Original

300 400 S0 600 700 B0 900 1000

200

Reduced

aprubep

apraubepy

200 300 400 500 GO 700 GO0 900 1000
Frequency (Hz)

100




Figure 4.2(a) Spectrum of the fan noise
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Figure 4.2(b) Spectrum of the fan noise in dB scale
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Figure 4.3(a) Spectrum of the autoregressive tone
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Figure 4.3(b) Spectrum of the autoregressive tone in dB scale


We observed from the above sequences of figures that the ANC system works very well if there are a few narrow peaks, as in the case of sinusoid. It performs progressively worse as more peaks appears and as they become wider. However, this behavior agrees strongly with the narrowband noise control property of the adaptive feedback ANC system found in [Kuo and Morgan, 1996.]

4.3 Subjective Testing

To supplement the quantitative performance analysis produced by MATLAB, I conducted several subjective testings in order to see how the ANC-reduced noises sound to the human ears.

The subjective testing scheme was arranged such that a person would be tested twenty times, and in every test there were two choices available for the person to choose, A, or B. I wanted the person to choose either A or B, depending on which one, in his opinion, that is more reduced than the other. I scrambled the correct choice (i.e., the one where the ANC system is activated, the other one I did nothing) such that the testing would be as unbiased as possible. Also, I interleaved the three different noises described in the previous section: sinusoid, fan, and autoregressive noises. Therefore the implicit task of the test subjects was to detect reduction in noise while the ANC system operated. Here is the result of the experiment:


User picks when ANC is on
User picks when ANC is off
Subtotal 
% Correct

Sinusoid
24
0
24
100 %

Fan noise
19
9
28
67.9 %

Autoregressive
21
7
28
75 %

Table 1. Subjective Test Result

The subjective test result shows that the reduced sinusoid noise is readily detected by the human ears; the autoregressive tone ranks the second, followed by the fan noise. According to the previous section, we should expect that the reduced autoregressive should be the hardest to notice whereas Table 1 suggests that the ANC system performs the worst with the fan noise. An explanation is offered: from Figure 4.2(a) we see that as the ANC system cuts the strongest peak of the fan noise, it adds new noises around the peak that are almost half as strong. On the other hand, Figure 4.3(a) says that there are new noises generated, but they are relatively weak. Getting more samples should also straighten the discrepancy.

All in all, the subjective test verifies what we discussed in Quantitative Performance Analysis – that the adaptive feedback ANC system is a narrowband noise canceller and so it works best with a noise that has a few sharp peaks in its spectrum. 

5. Conclusions

The real-time feedback ANC system that I developed does what it is supposed to do: reducing noise. It has a big weakness, however, that is it creates other noises besides attenuating the intended noise. These other noises, although not strong, are easily detected by the human ears. Currently, I do not know how the extra noises are generated, probably it is due to the usage of Q15 fractional-number representation. While it gives the best resolution possible with 16-bit processors, it is not nearly as precise as full-blown 32 bit IEEE floating-point. Therefore roundoffs while doing fractional multiplications are inevitable, and those truncations are accumulated and so introduce unwanted noise. The ‘C54 is a fixed-point processor, and hence if we insist to do 32-bit floating-point arithmetic its performance will be severely degraded. Future work to fix the extra noise problem would make the ANC system more useful or practical. 

Some recommendations to improve the noise-canceling performance while using some parts of my project outcome are as follow. First, if we try to hand-assemble the ‘C54 code, instead of using the C compiler, we can considerably improve the efficiency of the code. More efficient code means that we can increase the size of the of the filter while using the same hardware and software resources. In turn, longer filter lengths should improve the ANC system’s capability to reducing ‘harder’ noises such as the autoregressive tone. In fact, Kuo and Morgan (1996) assents that the adaptive feedback ANC demands high filter order in order to achieve good reduction over wide spectrum.


Second, we can employ other ANC schemes such as feedforward and hybrid ANCs. These ANC schemes are potentially much more capable to reducing broadband noises than the feedback ANC which I developed. Moreover, the hybrid ANC, which combines the feedback and feedforward ANCs, requires low filter orders to achieve good noise attenuation. On the other side, these systems demand the use of two microphones, one is to pick the reference signal x[n], and the other is to pick up the error signal e[n] (hence in those cases we do not synthesize the signal x[n] from e[n].) Additionally, we ought not to use the ‘C54 EVM board that I used with my project, because the board does not allow for another analog interface circuit (AIC) to be installed. In other words, the board is limited to a microphone and a loudspeaker. A solution is that we might try to use the PC’s sound card where another microphone can be attached. But, there is one precaution of doing this: the data transmission from the PC to the EVM board is interrupt-based meaning it takes considerable time. Thus, if this happens regularly while the real-time system is in operation, sampling on the EVM side may be disrupted, resulting in distorted error signal (some data are lost.) This behavior had actually been observed in my project before the sampling rate was lowered to 2 kHz (at this low rate probably the sampling corruption would disappear.) That is why I modified the ‘C54 ANC system to avoid any communication with the PC while the ANC algorithm and sampling are in progress, the EVM only sends the processed data after they are done. Therefore, if we want to implement the feedforward and hybrid ANC schemes, it is advisable that we use a DSP hardware that can support two microphones and a speaker.


All in all, the project has been a very useful learning experience: I learned how to develop an embedded system almost from scratch even though my system is still on the pre-prototype stage; the experience of doing simulations and then implement the ANC algorithm on the target system; I learned how computer systems allocate memory space; and also now I become quite comfortable working with a debugger for embedded devices such as the ‘C54.

6. Bibliography

S. M. Kuo and D. R. Morgan, Active Noise Control Systems – Algorithms and DSP Implementations. New York: Wiley, 1996.

S. M. Kuo and D. R. Morgan, “Active Noise Control: A Tutorial Review,” Proceedings of the IEEE, vol. 87, no. 6, pp. 943 – 973, June 1999.

C. Marven and G. Ewers, A Simple Approach to Digital Signal Processing. New York: Wiley, 1996.

TMS320C54x DSP Reference Set – Volume 1: CPU and Peripherals (SPRU 131)

TMS320C54x DSP Reference Set – Volume 2: Mnemonic Instruction Set (SPRU 172)

TMS320C54x DSP Reference Set – Volume 4: Applications Guide (SPRU 173)

TMS320C54x Optimizing C Compiler User’s Guide (SPRU 103)

TMS320C54x Assembly Language Tools User’s Guide (SPRU 102)

TMS320C54x DSPLIB User’s Guide – Optimized DSP Library for C Programmers on the TMS320C54x (SPRA 480)

TLC320AC01C Single-Supply Analog Interface Circuit Data Manual (SLAS057)

TMS320C5xx C Source Debugger User’s Guide (SPRU 099)

TMS320C54x Evaluation Module Technical Reference (SPRU 135)

10

_995477405.unknown

_995477443.unknown

_995477520.unknown

_995477544.unknown

_996594000.doc
[image: image1.png]) fcoessibl) ®
- e = dirl
v7In]
2
Wi e i) e
l dolive ie) Isecandarrpatn| )
57(2) (from 57(2) (from High-pass.
P P i
‘ Leasthean el
0 Squares (LMS)
#0l | algoritm .

=]

=eln] +yin]

‘Wikin the bold ne: electical domain, outside it physical domain ()








_995477530.unknown

_995477466.unknown

_995477419.unknown

_995453998.unknown

_995454024.unknown

_995456386.unknown

_995453523.unknown

_995453583.unknown

_994157808.doc
[image: image1.png]Loudspeaker
Eror Microphone stk

0" ==

Noise Source

o[ Fecdback |l
ANC








