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ABSTRACT

We propose a new, challenging, problem in kinship classification:
recognizing the family that a query person belongs to from a set of
families. We propose a novel framework for recognizing kinship by
modeling this problem as that of reconstructing the query face from
a mixture of parts from a set of families. To accomplish this, we
reconstruct the query face from a sparse set of samples among the
candidate families. Our sparse group reconstruction roughly models
the biological process of inheritance: a child inherits genetic ma-
terial from two parents, and therefore may not appear completely
similar to either parent, but is instead a composite of the parents.
The family classification is determined based on the reconstruction
error for each family. On our newly collected “Family101” dataset,
we discover links between familial traits among family members and
achieve state-of-the-art family classification performance.

Index Terms— kinship classification, facial inheritance, spar-
sity, sparse group lasso, family

1. INTRODUCTION

Kin recognition is a new research arena in computer vision that has
attracted increasing attention in recent years [1, 2, 3]. In computer
vision, kin recognition is the task of training the machine to recog-
nize the genetic kin and non-kin based on features extracted from
digital images. In this paper, we are interested in the problem of
kinship family classification: Given a set of families, each with a set
of images of family members, the goal is to determine which family
that a person in a query image belongs to. We present the idea that
kinship classification from facial images is improved when we use
sparsity to model the genetic process of heredity of visible traits.

The computer vision facial representations do not answer ques-
tions about why people look the way that they do, or how a woman’s
face’s appearance is affected by her ancestors. To answer questions
along this vein, we must appeal to the field of genetics. Based on
work from the 1860’s, Gregor Mendel is credited with discovering
the laws of the inheritance of visible traits between generations of
offspring (specifically pea plants) in sexual reproduction. Mendel
produced offspring from various pea plants with different visible
traits (e.g. white or purple flowers), and observed the proportion
of offspring with each traits. From this evidence, he proposed the
idea of factors (i.e., alleles of a gene) that code for either dominant
or recessive traits.

Our main contributions are the following: First, we propose
a sparse group lasso that models the inheritance of facial features
(Fig. 1). We show that our model performs well at a new kinship
classification task: determining which family from a set of families
that a query person belongs to. Finally, we have created and will
share a large database of families, named “Family101”, which con-
tains 101 public families with cross-generation family structure, with
607 individuals and 14,816 facial images.

Fig. 1. We use facial parts of family members to reconstruct a query
person. Given a large number of facial parts from various families
as dictionary, as shown above, a query person’s image can be recon-
structed from a sparse group of facial part bases from the dictionary.
The height of a bar reflects the importance of this base in reconstruct-
ing the query person. Interestingly, the non-zero weights represent
the images of people from Obama’s family, while people from other
families get zero weights.

2. RELATED WORK

We review related work on sparsity, face recognition, and kinship
recognition.

Sparse group lasso: Group sparsity was introduced in [4, 5].
For a given a test image, the non-zero linear reconstruction coeffi-
cients should ideally only appear in one or a few classes. It aims
to select only a few classes to reconstruct the test data. To empha-
size the sparse characteristic on both the instance level and the group
level, sparse group lasso is a combination of group sparse coding and
sparse coding. Group sparsity has been applied to image annotation
[6] and region labeling [7]. Our work learns the sparse coefficients
with respect to the facial parts from the family dictionary, and the
resulting reconstruction residues from all parts are used to identify
the family and also relatives who have similar facial traits.

Face recognition: Numerous methods have been proposed to
tackle this long-standing challenge, including Eigenfaces [8], Fisher-
faces [9] and SVM [10]. Recently, Wright et al. [11] applied a sparse
representation-based classification (SRC) approach to frontal view
face recognition with varying expression and illumination, as well
as occlusions and disguise, and achieved impressive performance,
which was followed by several extensions [12]. All these methods
are restricted to face recognition problem, not kinship recognition,
and enforce sparsity on the entire dictionary, instead of group spar-
sity which enforces additional sparsity on the group level.

Work on face verification addresses the enormous variability in
which the same face presents itself to a camera. Kumar et al. [13]
explore face verification using attribute and simile classifiers. Yin et



Query (a) (b) 
Fig. 2. An example of kinship classification task between two possi-
ble families with both candidate parents displayed. A direct one-to-
one appearance-based approach might classify the query to family
(a) due to the similarity between the query person and the mother.
However, the actual related family is (b). The query person is Shan-
non Lee, daughter of Bruce Lee and Linda Lee Cadwell.

al. [14] also achieves good verification accuracy using an associate-
predict model. These works, although related, are tackling the prob-
lem of verifying the same face with variability caused by pose, ex-
pression, hairstyle, etc. In contrast, our work involves different faces
from the same family, and therefore requires a new framework by
reconstructing the query face from a mixture of parts from a set of
family members

Kinship recognition: Human perception of kinship is an active
research area in psychology [15, 16, 17, 18, 19, 20]. The findings
from the psychological literature include that (1) humans are able to
recognize kinship even on unfamiliar faces; and (2) the mechanism
of kinship perception is probably different from identity recognition.
Motivated by the psychological findings, several attempts have been
made to develop computational approaches to kinship recognition.
Fang et al. [1] tackles the kinship verification task by extracting dis-
criminative features from facial images and using the absolute differ-
ence between pairs of people to determine the existence of kinship.
Xia et al. [2] utilizes young parents as an intermediate distribution
to bridge the children and the old parents and reduce the divergence
caused by age via transfer learning. Unlike our approach, these
methods tackle the one-to-one verification problem without consid-
ering feature inheritance from multiple relatives, and do not model
facial parts specifically. In contrast, our kinship classification model
is one-to-multiple that better resembles the biological process of in-
heritance, as illustrated in Fig. 2. Our method models the feature in-
heritance across multiple individuals, and it is also able to estimates
which relatives have similar facial features to the query person.

3. APPROACH

We segment the query face into parts (eyes, nose, etc.) and recon-
struct each part as a linear combination of a set of database parts.
We assume that we have a training set of images of different fam-
ilies, and within each family there are several images of the same
person.

3.1. Notation

The traditional Lasso problem is formulated as:

min
α
‖y −Dα‖22 s.t.‖α‖1 ≤ σ (1)

where σ > 0 is a constant, y ∈ Rn is the signal to be coded, D =
[d1, . . . , dk] ∈ Rn×k is the dictionary with column vector dj ∈ Rn

as the jth atom, and α ∈ Rk is the coding coefficient vector.
In our problem of kinship classification, y is the feature vector
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Fig. 3. Twelve facial parts are selected to build the part-based dic-
tionaries.

computed from the query person’s image, D is the dictionary com-
posed of the training images from various families, and α is a sparse
coefficient vector to represent y with a combination of vectors from
D. The query person does not appear in any base of the dictionary
D, while the family relatives of the query person are in D.

3.2. Part-based Dictionary

We use parts of the face instead of the entire face to address the kin-
ship classification problem and model the process of facial feature
heredity. We segment the facial image into 12 parts, following the
approach in [13], as shown in Fig. 3. The location and the size of the
12 facial parts are determined from the annotation of one researcher
on a template face and applied to all the other facial images which
have been aligned to the same template. For each part p, we build
a dictionary D(p) from the training samples. The atom d

(p)
j is the

feature extracted from the part p of the training face sample j in the
dictionaryD(p). This enables us to find the features in the dictionary
that best reconstruct each part in the query face, and each part is the
dynamic combination of the features from the part-based dictionary.

3.3. Kinship Classification with Sparse Group Lasso

We formulate the problem as a sparse group lasso, where we en-
force sparsity on both the group (family) and individual feature lev-
els. This is based on the observation that the query person inherits
features from related family members, thus the non-zero coefficients
in α tend to be in groups and indicate kinship. We only need a few
images of the related family members with similar expression, il-
lumination and pose to represent the features in the query image.
By taking advantage of the coefficients’ group structure, the perfor-
mance of kinship classification model can be improved. The prob-
lem is formulated as:

argmin
α
‖y −Dα‖22 + λ1

m∑
j=1

‖αGj‖2 + λ2‖α‖1 (2)

where the training images are partitioned into m disjoint groups
G1, G2, . . . , Gm. α = [αG1 , αG2 , . . . , αGm ] and αGj denotes the
group of weights corresponding to group Gj . In the kinship clas-
sification problem, the groups are naturally defined as the different
families linked by blood relation. λ1

∑m
j=1 ‖αGj‖2 is the combina-

tion of L1 and L2 norms. The L2 norm is used for the weights inside
the same group, and the L1 norm is used to sum the results between
groups. Using the group structure ensures more robust and accurate
weights and still benefits from the sparsity. λ2‖α‖1 is the L1 norm
to enforce the sparsity on the coefficients in α, which benefits from
the sparsity by selecting only a few images with similar illumination,
pose and expression.

In Eq. 2, the sparse factorization coefficient α indicates the dis-
tribution of y on all the bases in D, each of which encodes a specific
feature vector of the candidate family member. A child inherits ge-
netic material from two parents, and therefore may not appear com-
pletely similar to either parent. Ideally, the person that corresponds



to the same family should have high coefficients from related family
members and low or zero coefficients from unrelated persons. To
classify the family that a query person belongs to, we reconstruct the
facial part p of the query face y, y(p), with the bases for facial part
p from the family j, D(p)

j , and the weights in α that correspond to

family j, α(p)
Gj

. The reconstruction error of facial part p for family j

is R(p)
j = ‖y(p) −D(p)

Gj
α
(p)
j ‖

2
2. R is then normalized by the size of

the facial part.
From the genetic perspective, not all traits inherited from the

parents to the child are dominant. The recessive trait may be ex-
pressed as a phenotype if the child inherits two copies of the gene
from the parents. In this case, the child may have some facial traits
distinct from both parents. So the reconstruction error of these parts
will be large even for the related family. On the other hand, some
dominant traits are representative for the family. A few character-
istic traits passed from the parents to the child could help people to
identify the kinship between the people easily. Thus, instead of us-
ing all the facial parts to classify kinship, we choose the three facial
parts of the query person with the smallest possible residues among
all R(p)

j , j = 1, 2, . . . , k. We rank the normalized reconstruction er-
ror for all candidate families for these three facial parts, and sum the
ranks for each family. The kin related family is decided as the one
with the smallest rank sum.

3.4. Familial Traits Tracing

By learning the sparse coefficient α(p) from the part-based dictio-
nary D(p) for each query image, we determine which family mem-
bers have similar facial parts. We first find the family that the query
person most likely belongs to by computing the rank-sum of the
three facial parts with least reconstruction error as described in Sec-
tion 3.3. Then we pick up the top three images in the part-based dic-
tionaryD(p) with the largest coefficients. These images are regarded
as the images of family relatives who have similar facial traits.

4. DATASET

We assemble a new dataset called “Family 101” containing 101 dif-
ferent family trees, including 206 nuclear families, 607 individuals,
with 14,816 images. The dataset includes renowned public families.
The structure of the Family 101 dataset is illustrated in Fig. 4. To the
best of our knowledge, it is the largest dataset with structured famil-
ial relationship. We will publish our dataset upon the publication of
the paper.

We used Amazon Mechanical Turk to assemble the dataset by
asking workers to upload images of family members that we spec-
ify. The identities of the individuals are then verified. Each fam-
ily contains 1 to 7 nuclear families. In total there are 206 nuclear
families (both parents and their children), each with 3 to 9 family
members. The final dataset includes around 72% Caucasians, 23%
Asians, and 5% African Americans to guarantee a widespread dis-
tribution of facial characteristics that depend on race, gender, age.
We attempted to exclude non-biologically related parents-children
by checking the familial relationships using public information avail-
able online. For pair-wise relationships, there are 213 father-son re-
lations, 147 father-daughter relations, 184 mother-son relations, and
148 mother-daughter relations. For some of the family members in
Family 101 dataset the Internet search returns relatively few unique
photographs. For all experiments in this paper we use only 546
family members for which there are at least 5 unique photographs.
The comparison between our dataset and the existing family image

(a) Kennedy family tree from FamNet dataset

(b) All 48 images of Caroline Kennedy

Fig. 4. Our Family 101 database contains 14,816 images of 607
public figures from 206 nuclear families from 101 renowned root
families. Here, we show one of the 101 families: the Kennedy family
tree with three generations. The variability in appearance captured
by Family 101 can be seen in (b), which shows all 48 images of
Caroline Kennedy.

Table 1. Comparison of our Family 101 dataset and other existing
family image datasets of human faces. “Age” variation refers to the
variation of age of the same individual, e.g. people when they are
young and old. “Family structure” refers to the existence of cross-
generation and family tree relationship in the dataset. Bold font in-
dicates relatively larger scale datasets or more information.

Dataset No.
Family

No.
People

No. Im-
ages

Age
varies?

Family
struc-
ture?

CornellKin[1] 150 300 300 No No
UB KinFace[2] 90 180 270 Yes No
Family 101 206 607 14,816 Yes Yes

datasets are summarized in Table 1. Next, a commercial face de-
tection package was used find faces six fiducial points per face: the
corners of both eyes and the corners of the mouth, used for facial
alignment.

5. EXPERIMENTS

5.1. Experiment Setup

We evaluate our approach on the “Family101” dataset. We use a
dense SIFT descriptor on rescaled facial images of size 61×49 pixels
as our image feature. The SIFT descriptors extracted from 16 × 16
pixel patches are densely sampled from each image on a grid with
step size 6 pixels. The images were all preprocessed to gray scale.
The parameters controlling the sparsity of the coefficients λ1 and
λ2 are determined on a separate validation dataset of 20 families
which do not overlap with the testing data. The parameters are set as
λ1 = 0.1, λ2 = 0.1.

We compare our part-based reconstruction to three baselines:
Baseline: Our first two baselines are the widely used discrimi-

native classifiers, K-nearest-neighbors and support vector machine.
For these two baselines, we tune the parameters to reach the best
possible performance for kinship classification. Our third baseline
sparse representation based recognition (SRC) proposed by Ma et
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Fig. 5. Left: Our proposed sparse reconstruction method is the
most robust at classifying the family that a query face belongs to.
When there are more families to choose from, overall performance
decreases, but the improvement margin of our proposed method in-
creases. Right: Performance improves as the number of training
exemplars per family increases.

al. [11] for robust face recognition, which uses L1 regularization on
the whole face. All four classification algorithms (3 baselines and
our proposed method) use the same features, i.e. the dense SIFT
features described above, for fair comparison. SRC in our baseline
also uses the dense SIFT feature instead of the pixel intensity, but
the classification framework is same as [11].

Setup: We compare all methods in several different scenarios.
Unless specified in each scenario, for each family, we use 3 fam-
ily members for training (i.e., the training individuals comprise the
sparse dictionary) and 2 for testing. 20 families are randomly se-
lected from the Family101 dataset for evaluation in every scenario.
Families with fewer than 5 family members are not used. We use
30 images of each individual for both training and testing, and re-
port mean per-family accuracy over 10 random family selected for
training and the remaining 10 for testing.

5.2. Experimental Results

We validate our propose sparse group lasso method for kinship clas-
sification in three different scenarios, by tuning the number of fami-
lies for evaluation, number of family members for training and trac-
ing the facial traits.

Number of families: We first study kinship classification as the
number of families (or categories) increases. Fig. 5 (left) shows the
results where our proposed method surpasses the baselines for the
problem of kinship classification.

First, we see that all of the four methods perform much better
than chance, while our proposed method consistently performs better
than other three algorithms. This validates the power of part-based
reconstruction. In addition, SRC and our proposed methods gains
over KNN and SVM with larger number of families demonstrate the
benefit of sparse reconstruction modeling.

As one would expect, accuracy for all four approaches decreases
with more families in the gallery. Our method surpasses the base-
lines for the whole range, and the gain of our method compared to
the baselines grows as the number of families increase.

Number of family members for training: We next study the
impact of varying number of family members for training. How
many members from one family does the computer need to see be-
fore it can classify an unknown person to one of the families with
reasonable accuracy? We keep the total number of family members
same for each family, while varying the number of family mem-
bers who are to be classified. Fig. 5 (right) shows the results as
we increase the number of family members for training, where for
each family, we randomly select n training individuals from avail-
able family member, and then use 5− n for testing, to keep the total
number of family members for both training and testing the same.

E
ye

s 
N

os
e 

H
ai

r 
M

ou
th

 

Sheen 
Family 

0 

0.5 

1 

Fig. 6. Visualization of the sparse representation from a family fa-
cial parts. Each row in the left-most matrices corresponds to one
reconstruction coefficient for a test image with respect to 50 people
from 10 families. Red indicates large magnitude in the coefficient
while blue indicates low magnitude. We observe that the bases are
indeed very sparse. For a query image of Martin Sheen, the three
parts with the least reconstruction errors are hair, eyes and mouth.
In the middle column, red bars indicate reconstruction from related
family members, while the blue bars indicate reconstruction from
unrelated people. We show the actual images that are used to re-
construct the parts above the axis. Typically, reconstruction error is
higher when a part is reconstructed from unrelated people (versus
family members).

For all approaches, performance improves as the number of train-
ing people increases. Our proposed method performs better than the
baselines over most of the spectrum.

When using more than two individuals for training, our method’s
advantage of utilizing the combinatorial information from multiple
family members is shown by the faster increase of accuracy, which
makes sense because the children inherit features not only from one
parent or a single relative family member, and share features in com-
mon with other relatives (besides parents).

Facial traits tracing: A visualization of the sparse coefficients
of query images with respect to a set of families is shown in Fig. 6.
We observe that non-zero coefficients tend to cluster in groups, and
typically come from individual family members who have similar fa-
cial traits with the query person. However, due to the noise caused by
various factors and potential similarity between people who are not
related by family linkage, e.g., Martin Sheen may has similar eyes
as Cynthia Lennon in this photo, but most of non-zero coefficients
(e.g., for hair, nose, mouth) are from the Sheen family.

6. CONCLUSION

We propose a novel framework for recognizing kinship by modeling
this problem as that of reconstructing the query face from a mixture
of parts from a set of families, which allows for a richer utilization
of family members’ information and family structure than the com-
monly one-to-one kinship verification. Our model is motivated by
the biological process of inheritance. Various experiments on our
newly collected dataset “Family101” demonstrate the advantages of
our idea.
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