Sparsity-Based Deconvolution: A new data-driven method for low-dose perfusion CT quantification

Ruogu Fang, Tsuhan Chen
Pina Sanelli, Ashish Raj

Cornell University
Weill Cornell Medical College

International Symposium on Biomedical Imaging 2012

2012, May 3rd
Motivation for Improving Low-dose Perfusion CT

- **Recover** high-dose perfusion parameters such as BF from low-dose data to reduce radiation risk and improve diagnosis.

- **Enhance** perfusion CT quantifications in noisy and low-dose data: residue impulse function (IRF), blood flow (BF), etc…

![Image of High-dose CTP, Zoom-in Region, Low-dose CTP PSNR=80, and Zoom-in Region](image)
Regularization priors used to quantify perfusion parameters:

- Temporal convolution
- Learning from data
Priors in perfusion CT

• Regularization priors used to quantify perfusion parameters:
 – Temporal convolution
 – Learning from data

Indicator dilution theory:

CTP (120 sec)
Priors in perfusion CT

- Regularization priors used to quantify perfusion parameters:
 - Temporal convolution
 - Learning from data

CTP (120 sec)

Database of Residue Functions

May 3rd, 2012
Page 5
Concept of Sparse Residue Representation (SRR)

• Data-driven
 – Perfusion parameters are learned from data on-the-fly through sparse representation

• Advantages
 – No assumption on any parametric model of perfusion curves
 – Highly robust to noise and yield accurate reconstruction
Related Work: applications of sparse representation

- Image Denoising: sparse and redundant representation

- Deformable Segmentation: sparse shape representation
 - S. Zhang. Medical Image Analysis 2011

Our contribution:
Sparsity prior in residue functions for CT perfusion quantification
Sparse Residue Representation: Our model

\[J = \| C_v - C_a R \|_2^2 + \mu \| x \|_0 = \| C_v - C_a D x \|_2^2 + \mu \| x \|_0 \]

- **R**: residue impulse function (RIF)
- **D**: dictionary learned from training data
- **x**: sparse coefficients for linear combination
- **C_v**: tissue enhancement curve (TEC)
- **C_a**: artery input function (AIF)
- **\(\mu \)**: sparsity regularization parameter
Sparse Residue Representation: Our model

\[J = \|C_v - C_a R\|_2^2 + \mu \|x\|_0 = \|C_v - C_a D x\|_2^2 + \mu \|x\|_0 \]

- R: residue impulse function (RIF)
- D: dictionary learned from training data
- x: sparse coefficients for linear combination
- \(C_v\): tissue enhancement curve (TEC)
- \(C_a\): artery input function (AIF)
- \(\mu\): sparsity regularization parameter
Sparse Residue Representation: Our model

\[J = \| C_v - C_a R \|_2^2 + \mu \| x \|_0 = \| C_v - C_a D x \|_2^2 + \mu \| x \|_0 \]

- **R**: residue impulse function (RIF)
- **D**: dictionary learned from training data
- **x**: sparse coefficients for linear combination
- **Cv**: tissue enhancement curve (TEC)
- **Ca**: artery input function (AIF)
- **\(\mu \)**: sparsity regularization parameter

Sparse Residue Function Reconstruction

May 3rd, 2012
Sparse Residue Representation: Our model

\[J = \|C_v - C_a R\|_2^2 + \mu \|x\|_0 = \|C_v - C_a D x\|_2^2 + \mu \|x\|_1 \]

- \(R\): residue impulse function (RIF)
- \(D\): dictionary learned from training data
- \(x\): sparse coefficients for linear combination
- \(C_v\): tissue enhancement curve (TEC)
- \(C_a\): artery input function (AIF)
- \(\mu\): sparsity regularization parameter

L₁ Relaxation

Solve by SLEP: Sparse Learning with Efficient Projections.
Baseline: cTSVD

- **cTSVD**: circulant Truncated Singular Value Decomposition
 - Most commonly used deconvolution method
 - Truncate the small singular values to zero to remove oscillation
 - Sensitive to varying contrast (bias field) and noise
Numerical Simulation

- **AIF Generation: Gamma-variant function**

 \[C_a (t) = \begin{cases}
 0 & t \leq t_0 \\
 a(t - t_0)^b e^{-(t-t_0)/c} & t > t_0
 \end{cases} \]

 \(a=1 \quad b=3 \quad c=1.5 \quad t_0=1 \)

- **Residue Function Generation: Family of gamma distributions**

 \[h(t; \alpha, \beta) = \frac{1}{\beta^\alpha \Gamma(\alpha)} t^{\alpha-1} e^{-t/\beta} \quad \alpha, \beta > 0 \]

 \[R(t) = 1 - \int_0^t h(\tau) d\tau \quad \beta = BV / (\alpha \cdot BF) \]

- **Gaussian Noise Generation:**

 \[\varepsilon \sim N(0, \sigma^2) \]
Residue Function Recovery

PSNR=20, BV=4ml/100g, BF=20ml/100g/min

(a) True Residue

(b) cTSVD

(c) SRR

PSNR=40

BF=80ml/100g/min

May 3rd, 2012

Page 14
Sparse Recovery

BF in D

Dictionary

BF NOT in D

May 3rd, 2012

Page 15
BF Estimation

PSNR = 10
SPR: MSE = 2.4974
cTSVD: MSE = 47.1007

PSNR = 40
SPR: MSE = 0.1536
cTSVD: MSE = 9.1072

May 3rd, 2012 Page 16
BF maps and zoomed-in regions of a vasospasm patient (above row) and normal patient (below row) using (a) high-dose TSVD (b) low-dose TSVD and (c) low-dose sparse residue representation.
Clinical Results: BF Maps

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Variations</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SRR</td>
<td>TSVD</td>
</tr>
<tr>
<td>1</td>
<td>23.96</td>
<td>38.06</td>
</tr>
<tr>
<td>2</td>
<td>26.68</td>
<td>46.40</td>
</tr>
<tr>
<td>3</td>
<td>28.23</td>
<td>33.99</td>
</tr>
<tr>
<td>4</td>
<td>18.46</td>
<td>34.29</td>
</tr>
</tbody>
</table>

Table 1. BF variations (ml/100g/min) and mean square error (MSE) over certain ROIs estimated by sparse residue representation and TSVD.
Clinical Results: Ischemic Detection

Fig. 4. (a) Two clusters of normal vs. abnormal generated by TSVD method. The distance d between two clusters is 118.08. (b) Two clusters of normal vs. abnormal generated by our sparse residue representation method. The distance d between two clusters is 148.57.
Conclusion

• Sparse residue deconvolution
 – Based on temporal convolution and sparsity prior in terms of residue functions

• Advantages compared with cTSVD
 – Robust against: noise, varying BF, baseline oscillation...
 – Avoid overestimation of BF
 – Improve spatial smoothness of uniform areas
 – Enlarge differences between ischemic and normal tissues
• Thank you for your attention!

• Acknowledgements
 – We would like to thank NINDS, a component of NIH for funding this work within Cornell and Weill Cornell Medical College
 – We also acknowledges funding from NINDS 5K23NS058387-02