Sparsity-Based Deconvolution for Low-Dose CT Perfusion Enhancement

Ruogu Fang and Tsuhan Chen

Department of Electrical and Computer Engineering Cornell University

Pina C. Sanelli Department of Radiology, Department of Public Health, Weill Cornell Medical College

International Symposium on Biomedical Imaging 2013

7

Motivations of Low-dose CT Perfusion

- Reduce radiation dose of CTP at scanning time to as low as reasonably achievable (ALARA)
- Achieve high-quality perfusion maps with accurate quantitative values for rapid and correct diagnosis
- **■** Improve patient safety and quality of healthcare

R. Fang: Sparsity-Based Deconvolution for Low-Dose CT Perfusion Enhancement

50

45

Basic Principle of CT Perfusion INJECT SCAN DENSITY/INTENSITY CURVES MODEL CT $\mathbf{C}^{lpha}_{ ext{Density}}^{ ext{Electron}}$ Peak Time Sanelli PC. Neurographics 2005;4:1-74 Represents passage of contrast First pass Dynamic cine scanning contrast CB Deconvolution Images credit: Sanelli PC.

Exponential Growth of CT Scanning

Higher Radiation Dose associated with CT

Examination	Relevant organ	Effective organ dose (mSv)	Estimated dose equivalent (# of chest X-rays)
Dental x ray	Brain	0.005-0.01	0.25-0.50
Chest x ray (PA, lateral)	Lung	0.02	I
Screening mammogram	Breast	0.4	20
CT head	Brain	2.0	100
CT abdominal	Stomach	16.0	800

Compared to most medical imaging, CT produces much higher radiation doses. [Mettler 2008]

5

Radiation Over-exposure Leads to...

Radiation Risks to Health: Hair and skin damage, cataract formation, cancer induction, seizure, emotional grief—FDA investigation 2010

Freakish circling band of hair loss; boss sent him home in fear of contiguous disease

Source: New York Times July 31 2010 April 10, 2013

Priors in CT Perfusion

R. Fang: Sparsity-Based Deconvolution for Low-Dose CT Perfusion Enhancement

7

Priors in CT Perfusion

- Regularization priors used to quantify perfusion parameters:
 - Temporal convolution model
 - Spatial coherence

Spatial Smoothness Edge Preserving

Priors in CT Perfusion

Related Work

Sparse and redundant representation

M. Elad, IEEE Trans. Image
 Processing, 2006

Spatial-temporal Regularization

L. He, IEEE Trans Medical Imaging, 2010

Example-based
 Restoration/
 Super-resolution

 B. Freeman, Image-based Modeling, Rendering, and Lighting, 2002

Our contribution: Sparse prior in spatial-temporal restoration by learning from high-dose data

Sparse Prior in Spatial-temporal Restoration

- Construct a dictionary from the high-dose (i.e. low noise) perfusion maps
- Reconstruct the newly-input low-dose (i.e. high noise) perfusion map by sparsely combine the atoms from the dictionary

$$J_{st} = \|\mathbf{C} - \mathbf{C}_{\mathbf{a}}\mathbf{R}\|_{2}^{2} + \mu\|\alpha\|_{0}$$

$$Temporal Convolution Model$$

$$Sparse Prior$$

$$s.t. \|\mathbf{D}\alpha - x\|_{2}^{2} \le \epsilon$$

$$Inter-data Similarity$$

$$x = \mathbf{R}(t = 0)$$

$$CBF Definition$$

R. Fang: Sparsity-Based Deconvolution for Low-Dose CT Perfusion Enhancement

Sparse Prior in Spatial-temporal Restoration

Sparse Prior in Spatial-temporal Restoration

$$J_{st} = |\boldsymbol{\mu}_t || \mathbf{C} - \mathbf{C}_\mathbf{a} \mathbf{R} ||_2^2 +$$

Temporal Convolution Model

$$\frac{\|\mathbf{D}\alpha - x\|_2^2}{\|\mathbf{D}\alpha - x\|_2} + \frac{\mu_s \|\alpha\|_1}{\|\mathbf{D}\alpha\|_1}$$

Online Dictionary Learning

Learned Dictionary from High-Dose

Initial DCT Dictionary

Online Learned Dictionary

DCT vs. Learned Dictionary

42-yo male with normal cerebral blood flow

SPD @ 190mA R. Fang: Sparsity-Based Deconvolution for Low-Dose CT Perfusion Enhancement

35 yo female with A-SAH (ischemic in left hemisphere)

R. Fang: Sparsity-Based Deconvolution for Low-Dose CT Perfusion Enhancement

Asymmetry in aneurysmal SAH patient

Ischemic Voxels Detection

Receiver Operator Curve of Ischemic Detection

Conclusion

- Sparsity-based Deconvolution
 - Based on inter-patient similarity
 - Combine spatial and temporal models
 - Bridge the gap between high- and low-dose data
- Advantages
 - Learn compact dictionary of perfusion maps
 - Robust against: noise, varying contrast...
 - Enhanced visual quality and quantitative accuracy
 - Increase differentiation between normal and abnormal tissues

On-going Work: Blood-Brain Barrier Permeability Maps

Hemorrhagic transformation (HT) is a serious and potentially fetal complication in patients with acute stroke.

Diffusion weighted MRI shows the infarction in the right MCA territory (white). BBBP map shows increased BBBP in a small region of the right MCA territory (green/ red).

Follow-up CT without contrast shows that the area of infarction underwent hemorrhagic transformation (arrows). The BBBP map showed that this could happen.

Acknowledgements

■ Thank you for your attention!

This work is supported by Grant Number 5K23NS058387-03S from the National Institute of Neurological Disorders and Stroke (NINDS), a component of the National Institutes of Health (NIH).

