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Abstract. We propose a novel approach that applies global optimal tree-metrics 
graph cuts algorithm on multi-phase contrast enhanced contrast enhanced MRI 
for liver tumor segmentation. To address the difficulties caused by low 
contrasted boundaries and high variability in liver tumor segmentation, we first 
extract a set of features in multi-phase contrast enhanced MRI data and use 
color-space mapping to reveal spatial-temporal information invisible in MRI 
intensity images. Then we apply efficient tree-metrics graph cut algorithm on 
multi-phase contrast enhanced MRI data to obtain global optimal labeling in an 
unsupervised framework. Finally we use tree-pruning method to reduce the 
number of available labels for liver tumor segmentation. Experiments on real-
world clinical data show encouraging results. This approach can be applied to 
various medical imaging modalities and organs. 
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1 Introduction 

In the United States, liver tumor (or hepatocellular carcinoma) is one of the most 
common malignancies leading to an estimated one million deaths annually, and it has 
become the fastest growing cancer up to date [1]. Liver tumors segmentation is an 
important prerequisite for surgical interventions planning. The major difficulty in 
liver tumor segmentation is low contrasted boundaries and a large variability of 
shapes, sizes and locations presented by the tumor in the liver. Local intensity or 
intensity gradient feature based techniques are proved to be inadequate to differentiate 
between liver tissue and healthy structures. High performance segmentation methods 
should be capable to deal with the high variation in shape and gray value of the liver.  

In order to alleviate this problem, multi-phase contrast enhanced MRI is used in 
clinical practice to characterize tumor response to contrast agent, yet most of the 
current methods still lack maturity in terms of quantifying tumor burden and viability. 
We propose to extract a set of features in multi-phase contrast enhanced MRI images, 
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and apply an efficient tree-metrics graph cuts algorithm in computer vision to 
segment the tumor in the liver. In this manner, we design a classifier for semi-
automatic diagnosis of hepatocellular carcinoma.  

The contributions and novel aspects of our proposed approach include: 

1. New Framework for Global Optimal Multi-label Segmentation in Medical 
Image Data. 

This framework is based on directly clustering the available labels (intensity 
values or dynamic features) in medical image data, and use efficient tree-metrics 
graph cuts to find the global optimal labeling, while previous approaches have 
focused on conventional methods as active contours [2], level-sets [3], as well as 
machine learning [4]. The advantages of this new framework are discussed below 
in Section 2.2. 

2. Specific Focus on Multi-phase Contrast Enhanced MRI of Liver Tumor. 
In contrast to the works previously [5][6], our work on tree-metrics graph cuts 

segmentation focuses on multi-phase contrast enhanced MRI of liver tumor, 
which has not been explored to the best of our knowledge.  

3. Evaluation on Real-World Clinical Data with Many Applications. 
Our experiments employ segmentation problems of liver tumor and compared 

with the state-of-art work. The proposed method is also applicable to multiple 
image modalities, such as dynamic contrast enhanced MRI, CT perfusion. 

2 Method 

To find the segmentation boundary of tumor in low contrast multi-phase contrast 
enhanced MRI of liver tumor images, we propose a set of novel features along with 
the computational approaches to obtain them, and detail our framework of tree-
metrics graph-cut (TM) algorithm. Finally we propose a tree-cutting approach to 
interpret the labeling returned by the TM algorithm for tumor segmentation in the 
multi-phase contrast enhanced MRI liver data. 

2.1 Dynamic Feature Extraction 

Here we describe the general protocol for multi-phase contrast enhanced MRI. In 
multi-phase contrast enhanced MRI a bolus injection of a contrast agent, usually 
gadolinium-DTPA (Gd) is given to the subject (patients or animals). A set of T1-
weighted MRI volumes are acquired a few seconds (pre-contrast time) before the 
injection and at several time points after the injection (arterial phase, portal-venous 
phase and delayed phase), to first obtain a baseline or pre-contrast MRI, as well as the 
time-varying MRI with the contrast agent. As the contrast bolus perfuses through the 
vasculature, the time-course of the contrast at a given voxel, indicating the MRI 
signal, can be characterized from the plot. The specific time points for the data 
collection vary for different MRI settings, and the detailed time points in our 
experiments are illustrated in Section 3.1. 
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We denote a voxel in the volume as vi indexed by the set of voxels i I∈ . The 
associated time-course curve is denoted as yi(t) where t indexes the time points in the 
multi-phase contrast enhanced MRI scan. The total number of voxels in the volume is 
|I|. Healthy tissue in general is less enhanced by the contrast agent than the enhancing 
carcinomas, but more than necrotic tissue, which basically does not enhance 
apparently. 

The dynamic features that we extract from the time-series signals include: baseline 
(pre-contrast) MR signal (BL), peak enhancement (PE), and area under the 
enhancement curve (AUC), rise time (RT), and arrival time (AT), as depicted in 
Figure 1. For the coarse time-scale curves, the first three dynamic features are used, as 
depicted in Fig. 1(a). For more high resolution time-course curves, additional detailed 
dynamic features are extracted, as shown in Fig. 1(b). Our work uses both models, 
depending on the availability of the temporal resolution of the data.  

 

Fig. 1. Dynamic feature extracted from time-course curves of the MR signals. (a) A simple 
model where three features are used. (b) Full model where richer dynamic features are used. 

In the multi-phase contrast enhanced images, the first three features (BL, PE and 
AUC) are mapped in pseudocolor onto RGB color space for better visualization. 
Figure 2 visualizes the baseline MR image, along with the dynamic feature-enhanced 
image and pseudo-color mapped image. The feature-space mapping conveys 
additional information unavailable in any single MRI intensity image.  

 

Baseline MR Image Dynamic Feature Image Pseudo-color Mapping  

Fig. 2. Dynamic feature extraction and mapping. Left: Baseline MR image without dynamic 
feature extraction. Middle: MR image after using dynamic feature extraction method. Right: 
Pseudo-color image after feature-spacing mapping onto RGB color space. 
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2.2 Liver Tumor Segmentation as Metric Labeling 

The liver tumor segmentation problem can be interpreted as an instance of metric 
labeling; specifically an instance of spatially coherent clustering, where the 
observations are labels and we want to assign the voxels with new label. The new 
labels are gray-scale intensity levels, and further tree-pruning step will generate the 
actual segmentation for the liver tumor in multi-phase contrast enhanced MRI. Each 
of the new values should be close to the observed one in the original liver tumor 
multi-phase contrast enhanced MRI image, and the values of nearby voxels should be 
similar. Spatially coherently clustering has been addressed by several papers recently 
[7, 8, 9, 10]. All of them rely on iterative techniques without provable error bounds. 
In this paper, we propose to use tree-metrics graph cuts [6] which computes a global 
minimum solution of an energy function, to liver tumor segmentation in smulti-phase 
contrast enhanced MRI. The tree-metrics graph cuts algorithm applies graph cuts [11] 
on a tree of labels for distance measure. 

Let the dynamic features extracted from the liver multi-phase contrast enhanced 
MRI image be represented as an undirected weighted graph ( , )G V E= , where 

vertices V correspond to voxels and E are edges between neighboring voxels. Let L be 
the set of labels, and let :f V L→  be a labeling. Furthermore, let d(o(v), f (v)) be the 

cost for giving label ( )f v  to object v, where ( )o v is the observed label and ( , )d a b  is 

a distance on L. Let d( f (u), f (v))  be the cost for giving label f (u ) to object u 

and ( )f v  to object v, where u and v are the neighboring voxels. The goal is to find a 

labeling f that minimizes the cost function 

         Q( f ) = d(o(v), f (v))
v∈V
∑ + λ ⋅ d( f (u), f (v))

(u,v )∈E
∑             (1) 

We refer to the first summation in Q(f) as the “data term” and the second summation 
in Q(f) as the “prior term” (or “smoothness term”). As our prior, we want objects 
connected by an edge in E to have similar labels. The weights λ  decides the relative 
importance of the data terms and the smoothness terms. The larger the value of λ , 
the more smooth the output labeling. The choice of the parameter λ  is detailed in the 
experiments in Section 3.1. 

2.3 Tree-Metrics Graph Cuts 

To apply the tree-metrics graph cuts (TM) algorithm [6] on multi-phase contrast 
enhanced MRI liver tumor segmentation, we perform a pre-processing step to create 
suitable inputs to the TM algorithm, and a post-processing step on the output 
segmentation returned by the TM algorithm to create the final segmentation. 

The TM algorithm takes three things as input: a multi-phase contrast enhanced 
MRI liver image, a tree of labels, and a smoothness parameter λ ≥ 0. We generate a 
tree of labels with agglomerative clustering based on the extracted dynamic features 
from multi-phase contrast enhanced MRI data.  

Each stage of our approach – tree generation, sweep and pruning – is detailed in 
the sections followed. 



Segmentation of Liver Tumor Using Efficient Global Optimal Tree Metrics Graph Cuts 55 

              

Fig. 3. An examples of tree generation. Left: A synthetic image with tree colors as input. Middle: 
Binary tree of labels generated from the synthetic image. Right: Graph structure of the image. 

2.2.1   Tree Generation 
We apply agglomerative hierarchical clustering to create a tree of labels. Closest pairs 
of clusters (or labels) in the feature space are repeatedly merged. We cluster all the 
available colors from the image based on Ward’s variance criteria [12]. Fig. 3 
illustrates the agglomerative clustering on a synthetic image of three colors. For 
multi-phase contrast enhanced MRI liver image, we perform agglomerative 
hierarchical clustering on the pseudo-color mapped image from dynamic features. In 
practice, the agglomerative hierarchical clustering is implemented in phases, and k-
nearest neighbors (measured in Euclidean distance) are used as the candidate clusters 
and merged. Approximate nearest neighbors [13] are used when the number of 
clusters are very large. The stopping criterion is when the maximum variance 
becomes greater than two times of the minimum variance. 

2.2.2   Sweep Algorithm 
The tree of labels generated from the multi-phase contrast enhanced MRI pseudo-
color mapped image represents the tree-metrics distance function d. Now we apply 
the TM algorithm to the multi-phase contrast enhanced MRI liver image, with the tree 
of labels and a smoothness parameter λ ≥ 0. The TM algorithm will minimize the cost 
function for a distance d and labeling f: 

           
( , )

( ) ( ( ), ( )) ( ( ), ( ))
v V u v E

Q f d o v f v d f u f vλ
∈ ∈

= +∑ ∑              (2) 

We use graph cuts [11] to optimize the objective function Q( f )  in Equation (2), 

and use tree-metric distance to measure the cost in both the data term and the 
smoothness term. Compared with conventional graph cuts where the distance function 
is the Euclidean distance, the upmost advantages of using tree-metrics graph cuts are 
the global optimality and the efficiency. The TM algorithm computes the globally 
optimal labeling f for the cost function Q(f) in Equation (2) in O(log(k)(g(n)+k)) time 
for n voxels and k labels, where g(n) is the running time of the min-cut algorithm on 
graph with n nodes.  

2.2.3   Tree Cutting 
The labeling returned by TM algorithm is usually more than the required number of 
segments in the multi-phase contrast enhanced MRI liver image. Therefore we need to 
interpret the labels returned from the TM algorithm to find the exact tumor boundary 
in the liver. To reduce the number of labels, we “cut” the binary tree of labels at depth 



56 R. Fang et al. 

d; for each node at depth d (where the root node is depth 0), their child subtrees now 
map to the same label as their ancestor node at depth d). By cutting the tree at depth d, 

we are left with N labels, where 
0

2
d

n

n

N
=

=∑ . Finally, we use an interactive interface to 

ask radiologist to pick the segment (or label) of the tumor in the liver. 

3 Experimental Results 

Significant experimental work has been completed towards a new framework for liver 
tumor segmentation using tree-metrics graph-cuts in multi-phase contrast enhanced MRI.  

3.1 Liver Tumor Segmentation in Rabbit HCC Model 

Our method was developed and tested on data from a pre-existing study at John 
Hopkins University involving hepatocellular carcinoma (HCC) grown in a rabbit 
model. It has been shown that rabbit model demonstrates a physiology similarity to 
that of humans. The multi-phase contrast enhanced MRI exams were obtained using a 
standard T1-weighted MR acquisition sequence, with the following timed phases: pre-
contrast phase (0s), arterial phase (20s), portal-venous phase (60) and delayed phase 
(120s). Tumor size was determined through pathologic dissection in all animals. 
Dissections were performed by pathologists under guidelines and techniques that 
ensure accurate and reproducible measurement of tumor size. This pathology data 
served as the gold standard. A novel liver-specific Gadolinium-based contrast agent 
Gadoxetate Disodium (Eovist®) was intravenously injected.  In our experiment, 11 
rabbit liver multi-phase contrast enhanced MRI volumetric data were used. 

In the energy minimization problem in Equation 2, the smoothness parameter λ  
decides the level of smoothness in the output segmentation. We experimented with 
different λ s for the rabbit HCC 4-phase multi-phase contrast enhanced MRI data and 
found that the proper range of λ is between 2 to 10, depending on the specific dataset. In 
our experiment, we fixed λ to be 5 for all the 11 rabbit multi-phase contrast enhanced 
MRI volumetric data. 

Fig. 4 shows one frame of the segmentation results on 3D volumetric multi-phase 
contrast enhanced MRI liver tumor data. Using feature-space mapping and tree-metrics 
graph cuts, the segmentation results on rabbit liver tumor is promising. We have designed 
an interactive interface for radiologists to actively choose the tumor region by clicking on 
the segment and the algorithm eases the task of liver tumor segmentation by performing 
an initial segmentation of the tumor and other tissue types. 

We also compared our tumor segmentation results with a recent work on liver tumor 
segmentation [14]. In their work, Raj et.al. also applies the dynamic feature mapping 
method to improve the contrast between the tumor and the other tissue types. However, 
after the dynamic feature extraction, they use K-means to cluster the voxels and segment 
out the tumor. K-means algorithm takes O(ndk+1 log n) for running time, where n is the 
number of entities to be clustered, k is the number of clusters and d is the distance 
measure, compared to O(log(k)(g(n)+k)) of our method. Moreover K-means clustering 
does not give the globally optimal labeling. A comparison of the liver tumor 
segmentation result using our method and [14] is shown in Fig. 5.  
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(1) Dynamic parameter mapping

(3) Cut the tree with 2 labels

(2) TM Clustering and Sweep

(4) Final tumor segmentation

 

Fig. 4. Experiment results of rabbit liver tumor segmentation using tree-metrics graph cuts. The 
parameters are λ=5, d = 2. 

   

Fig. 5. Comparison of our algorithm (left) with [14] (right) on rabbit liver. The dark blue region 
in the right image is the final tumor segmentation using methods in [14]. 

Quantitative evaluation of our method is conducted by correlating the liver tumor 
size using our method (DPM+TM) with the gold standard, and compare with the 
segmentation results of [14] (DPM+K-means) on the same dataset. We use our 
proposed method to segment the liver tumor on 11 rabbit liver multi-phase contrast 
enhanced MRI 3D volumetric data and Fig. 6 shows the regression between our 
method and the gold standard, compared with that of [14] on the same dataset. The 
figure demonstrates that our method correlates with the dissections of pathologists 
with higher accuracy, while the volume size of the segmented tumor using [14] 
deviates from the gold standard at higher variation.  
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Fig. 6. Comparison of our method with [14] on the regression plot with gold standard 

4 Conclusion 

In this paper, we present a novel approach to apply dynamic feature mapping and 
tree-metrics graph cuts with tree pruning to the liver tumor segmentation in dynamic 
enhanced abdominal MRI data and compare our results with the state-of-art method. 
Our approach, which is efficient in computation and globally optimized in the tree-
metrics labeling, performs better than the conventional existing approaches in terms 
of qualitative visualization, quantitative tumor size measure, and avoids iterated 
method which is computational intense.  

There are several interesting directions for future work on this problem. To learn the 
proper structure of the tree, for instance, the optimal degree of the tree and the clustering 
criterion, will improve the segmentation result for arbitrary number of segments in the 
output. To find the accurate segmentation of the liver tumor from the initial segmentation 
of TM algorithm, an active learning approach can be adopted to determine the optimal 
smoothing parameter in the sweep stage and pruning depth in the cutting stage. 
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