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•  Our Goal: Preserve the low-contrast tissue and subtle 
perfusion information in low-dose CT perfusion. 

•  Current State of Art: SPD 
v Pros:  
o  Spatial-temporal, Data-driven 

v Cons:  
o  Over-smooth low-contrast tissue 
 (ischemic penumbra, infarct core, etc.) 

•  Can we treat the different tissue types respectively?  

Background 
sinogram 

Reconstruct 

CT Images 

Deconvolution 

Perfusion Maps 

Deconvolution: Estimate perfusion parameters (cerebral blood 
flow, blood volume, mean transit time) from time-series CT images.  

Thalamus 

Insula 

Caudate nucleus 

•  How to remove the noise and preserve the structural 
details of both high-contrast (vessels) and low-contrast 
(insula, thalamus) regions? 

•  Assumption: Different tissue types could be reconstructed 
from different dictionaries.  

•  A tissue-specific approach to sparse deconvolution 
•  STEP 1: Tissue Classification 

•  Classify the voxels in CTP into four classes: vessel, 
gray matter (GM), white matter (WM) and cerebrospinal 
fluid (CSF).  

•  Use Expectation-Maximization Segmentation (EMS) 
with contexture information incorporated by a MRF.  

CBF Map with SPD 

Slice Median  Vessel GM WM CSF 

Method cont.  
•  STEP 2: Tissue-Specific Dictionaries Learning 

m=vessel, GM, WM, CSF 
•  Patches with 50% or more pixels in class i are used 

for training dictionary Di . 
•  Use online dictionary learning.  

•  STEP 3: Weighted Sparse Deconvolution 
•  Reconstruct the CBF map for each tissue class using 

the respective dictionary. 

•  Weighted sum for each pixel based on the 
classification probability map. 

min
Dm,Am

NX

i=1

kymi �Dm↵ik2 + µ2k↵ik1

J = µ1kCm �CaR
mk22 + kfm �Dm↵k22 + µ2k↵k1

f̄i =
X

m

wm
i fm

i

•  Learned Dictionaries 
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Fig. 3. CBF maps and zoomed-in regions. A 63-year-old female with acute stroke has an ischemic
region in the right hemisphere of the brain (1st row) and a 35-year-old female with left middle
cerebral artery (LMCA) perfusion deficit caused by aneurysmal SAH (2nd row). (Note represen-
tations in medical images display the sides of the images in reverse order) LMCA and RMCA
are enlarged for comparison next to each image. The low-contrast tissue classes in the LMCA
and RMCA regions are highly noisy in cTSVD images, and are over-smoothed by KSVD-SPD,
while TS-SPD preserves the subtle variations and are closest to the ground truth.

Table 1. Quantitative comparison of PSNR (dB) in CBF maps at low-dose are reported for 10
CTP cases by cTSVD, KSVD-SPD and our TS-SPD. SAH and stroke indicate the two subjects
in Fig. 3. The best performance is in bold-face type.

PSNR Brain GM WM
Stroke SAH All data Stroke SAH All data Stroke SAH All data

cTSVD 43.51 34.87 33.57 12.81 15.94 15.91 19.99 18.65 17.82
KSVD-SPD 45.80 37.11 34.91 17.53 18.08 17.88 22.80 19.75 19.41

TS-SPD 47.84 38.38 36.65 18.92 19.66 19.91 25.02 22.56 22.28

the noise is greatly suppressed in the low-dose CBF maps for both enhancement al-
gorithms, KSVD-SPD tends to smooth the image too much, especially the non-vessel
structures. Our TS-SPD algorithm overcomes these drawbacks and preserves both the
vessel boundaries and the low-contrast structures of WM and CSF with tissue-specific
dictionaries and adaptive parameter settings for each tissue class.

Asymmetry: To visualize the asymmetry in the left and right middle cerebral artery
in Fig. 3, we compute the intensity difference maps between LMCA and RMCA for
three methods, as shown in Fig. 4. The intensity difference map of cTSVD is too noisy
to identify the asymmetry of LMCA and RMCA vessel structures, while KSVD-SPD
blurs the details of the vessel structure. The proposed method generates the difference
map with better contrast and spatial resolution for diagnosis of asymmetry in LMCA
and RMCA.

Quantitative comparisons: We report the PSNR (peak signal-to-noise-ratio) val-
ues for two cases in Fig. 3 and all testing subjects on the whole brain, GM and WM
in Table 1. The GM and WM are the tissue regions in the brain affected by stroke
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Fig. 4. Zoomed-in regions of the intensity difference maps between LMCA and RMCA of the
acute stroke (left) and SAH (right) patients estimated by (a) Ground truth (b) cTSVD (c) KSVD-
SPD (d) Proposed TS-SPD. Arteries are delineated in red, CSF in blue.

and other ischemic processes. The proposed method again achieves the highest PSNR
(usually 2⇠3 dB higher) in all cases, allowing for better discrimination ability of these
brain regions, by preserving the tissue structures for differentiation of infarct core and
ischemic penumbra in specific regions of the brain assisting neuroradiologists in diag-
nosis.

Table 2. Quantitative comparison of
the normalized distance between is-
chemic and normal tissue clusters. The
best performance of each column is in
bold-face type. (Unit: mL/100g/min)

Method Stroke SAH All data

cTSVD 42.71 46.03 49.91±5.12
KSVD-SPD 57.19 53.96 55.62±3.91

TS-SPD 63.25 56.64 59.60±3.82

Ischemic voxels clustering: We also perform
the clustering experiment as in [3] by aggregating
all voxels (within VOI) from the normal hemi-
sphere into a single “normal” cluster and the
pathologic hemisphere into an “abnormal” clus-
ter. To quantify the separability between normal
and ischemic CBF values, we define the dis-
tance between these two clusters as: d = (m1 �
m2)/

p
�

2
1/n1 + �

2
2/n2, where m1, m2 are the

means, and �1 and �2 are the standard devia-
tions of CBF in the normal and ischemic clusters,
n1 and n2 are the number of normal voxels is-
chemic voxels, respectively. We hypothesized that
our TS-SPD algorithm to produce larger distance
d, that is, to more definitely differentiate between
normal and ischemic tissues. Table 2 shows the
distance between normal and abnormal clusters
for the two cases in Fig. 3 and all subjects with CTP deficits. TS-SPD separates the
two clusters with greatest distance. One-tail paired t-test yields p = 0.051 between
cTSVD and KSVD-SPD, and p = 0.015 between KSVD-SPD and TS-SPD.

4 Conclusion

In this paper, we have proposed a novel tissue-specific dictionary learning and decon-
volution approach for CBF perfusion map enhancement in low-dose cerebral CTP. We

•  Ischemic/Normal 
Voxels Separation 

d = (m1 �m2)/
q

�2
1/n1 + �2

2/n2

•  Clinical Evaluation: 10 CTP datasets. PSNR 

•  Significantly improve the qualitative and quantitative 
fidelity to ground truth compared to global SPD. 

•  Preserve low-contrast, subtle structural information for 
improved diagnosis. 

•  Incorporate tissue-specific information into dictionaries. 

Project Page: http://tinyurl.com/tissuespecific 
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