MICCAI 2013 NAGOYA JAPAN

Visual Comparisons

Tissue-Specific Sparse Deconvolution for Low-Dose CT Perfusion

RUOGU FANG¹, TSUHAN CHEN¹, PINA C. SANELLI²

DEPT. OF ELECTRICAL AND COMPUTER ENGINEERING, CORNELL UNIVERSITY ²DEPT. OF RADIOLOGY, WEILL CORNELL MEDICAL COLLEGE, NYC, NY, USA

CBF Asymmetry Comparison

Method cont.

- **STEP 2**: Tissue-Specific Dictionaries Learning $\min_{\mathbf{D}^{m},\mathbf{A}^{m}} \sum_{i=1}^{m} \|y_{i}^{m} - \mathbf{D}^{m}\alpha_{i}\|_{2} + \mu_{2}\|\alpha_{i}\|_{1}$ *m*=vessel, GM, WM, CSF

 - Patches with 50% or more pixels in class *i* are used for training dictionary Dⁱ.
 - Use online dictionary learning.
- **STEP 3**: Weighted Sparse Deconvolution
- Reconstruct the CBF map for each tissue class using the respective dictionary.

$$J = \mu_1 \|\mathbf{C}^m - \mathbf{C}_{\mathbf{a}} \mathbf{R}^m\|_2^2 + \|f^m - \mathbf{D}^m \alpha\|_2^2 + \mu_2 \|\alpha\|_1$$

Weighted sum for each pixel based on the classification probability map. $\bar{f}_i = \sum w_i^m f_i^m$

Background

Deconvolution: Estimate perfusion parameters (cerebral blood flow, blood volume, mean transit time) from time-series CT images.

Motivations

- **Our Goal:** Preserve the low-contrast tissue and subtle lacksquareperfusion information in low-dose CT perfusion.CBF Map with SPD
- **Current State of Art: SPD** lacksquare

Insula-

Thalamus

- ✤ Pros:
 - Spatial-temporal, Data-driven
- **Cons:**
 - Over-smooth low-contrast tissue (ischemic penumbra, infarct core, etc.)
- Can we treat the different tissue types respectively?

Method

- How to remove the noise and preserve the structural details of both high-contrast (vessels) and low-contrast (insula, thalamus) regions?
- Assumption: Different tissue types could be reconstructed from different dictionaries.
- A tissue-specific approach to sparse deconvolution
- **STEP 1**: Tissue Classification
- Classify the voxels in CTP into four classes: vessel, lacksquaregray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). Use Expectation-Maximization Segmentation (EMS) with contexture information incorporated by a MRF.

- Ischemic/Normal _earned Dictionaries Voxels Separation $d = (m_1 - m_2) / \sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}$ Stroke SAH All data Method cTSVD 42.71 46.03 49.91±5.12 KSVD-SPD 57.19 53.96 55.62±3.91 TS-SPD 63.25 56.64 59.60 \pm 3.82 Global WM
 - Clinical Evaluation: 10 CTP datasets. PSNR

PSNR	Brain			GM			WM		
	Stroke	SAH	All data	Stroke	SAH	All data	Stroke	SAH	All data
cTSVD	43.51	34.87	33.57	12.81	15.94	15.91	19.99	18.65	17.82
KSVD-SPD	45.80	37.11	34.91	17.53	18.08	17.88	22.80	19.75	19.41
TS-SPD	47.84	38.38	36.65	18.92	19.66	19.91	25.02	22.56	22.28

Take Home Messages

- Significantly improve the qualitative and quantitative fidelity to ground truth compared to global SPD.
- Preserve low-contrast, subtle structural information for improved diagnosis.
- Incorporate tissue-specific information into dictionaries.

Contact E-mail: rf294@cornell.edu

Project Page: http://tinyurl.com/tissuespecific

MICCAI 2013 NAGOYA JAPAN SEP. 22-26, 2013 TOYODA AUDITORIUM NAGOYA UNIVERSITY