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Abstract. Sparse perfusion deconvolution has been recently proposed to effec-
tively improve the image quality and diagnostic accuracy of low-dose perfusion
CT by extracting the complementary information from the high-dose perfusion
maps to restore the low-dose using a joint spatio-temporal model. However the
low-contrast tissue classes where infarct core and ischemic penumbra usually oc-
cur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essen-
tial biomarkers. In this paper, we extend this line of work by introducing tissue-
specific sparse deconvolution to preserve the subtle perfusion information in the
low-contrast tissue classes by learning tissue-specific dictionaries for each tissue
class, and restore the low-dose perfusion maps by joining the tissue segments
reconstructed from the corresponding dictionaries. Extensive validation on clin-
ical datasets of patients with cerebrovascular disease demonstrates the superior
performance of our proposed method with the advantage of better differentiation
between abnormal and normal tissue in these patients.

1 Introduction

Computed tomography perfusion (CTP) [1] has been more commonly used in patients
with cerebrovascular diseases to characterize tissue perfusion. Specifically, in acute
stroke patients, detection of ischemic regions has been a main focus in the literature. The
associated excessive radiation exposure of CTP has aroused great concern due to over-
dosage leading to biological effects including hair loss, skin burn and increased cancer
risk [2]. Even currently recommended CTP scanning parameters still contribute to in-
creased lifetime cancer risk. Sparse perfusion deconvolution (SPD) [3][4] is a recently
proposed method for low-dose CTP deconvolution. Different from previous methods
[5][6], whose image prior has been based on some simplifying assumptions, SPD is
a data-driven method that restores the input low-dose perfusion map using a spatio-
temporal model. The model is regularized by a sparse combination of atoms from a
global dictionary learned from the high-dose perfusion maps. In this way, spatial pri-
ors are incorporated on-the-fly. SPD is able to remove the noise and can preserve the
vascular structure and contrast in low-dose perfusion maps.

Theoretically, a global dictionary is able to capture sufficient image information for
different tissue classes, given abundant training data from each class. Learned global
dictionaries have been applied to various domains including image super-resolution [7]
and deformable shape modeling [8]. However empirically the optimization procedure
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which minimizes the overall reconstruction error, tends to favor high-contrast patches
to the low-contrast ones in both the learning and reconstruction procedures. For medical
images, the subtle variations and changes embedded in the low-contrast tissue classes
such as white matter can be crucial for disease detection and diagnosis [9].

In this paper, we propose a tissue-specific sparse deconvolution method to address
the limitations above. Our method starts from segmenting the brain into different tissue
classes. A modified version of automated model-based tissue classification [10] is em-
ployed to segment the brain tissue classes. Then tissue-specific dictionaries are learned
from the training segments of each class. Finally we use weighted sparse deconvolution
method to restore each tissue class and stitch them together. The extensive experiments
demonstrate the superior performance of our method. It is important to note that all the
preprocessing methods to denoise the dynamic CT data can be complimented with our
proposed deconvolution algorithm to achieve better performance.

Our main contribution is two-fold: (1) Tissue-specific dictionaries for each tissue
class are employed in place of the global dictionary to capture the low-contrast tissue
class and delicate structural details. (2) Weighted sparse deconvolution based on the
probability of the tissue classification is proposed for a unified reconstruction of the
low-dose perfusion maps. In vivo brain acute stroke and aneurysmal SAH patients data,
we demonstrate the superiority of our proposed method in CBF estimation that leads to
better separation between normal and ischemic tissue.

2 Tissue-specific Approach to Sparse Deconvolution

2.1 Tissue Classification

We first classify the voxels in the dynamic brain CTP data into four tissue classes: ves-
sel, gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). Since compu-
tational efficiency is very important in our framework for real-time clinical diagnosis,
we choose a simple yet effective segmentation approach by adapting a tissue classifica-
tion algorithm for MRI [10]. We first compute the median value for each voxel along
the temporal axis since different tissue classes have different contrast perfusion char-
acteristics. Expectation-maximization segmentation is employed on the median map to
obtain probability maps of GM, WM and CSF, while contexture information is incor-
porated by a Markov Random Field (MRF). The reason for choosing median map as a
robust measurement of the tissue contrast in CTP is because of its higher tissue contrast
compared to other statistics in our experiments. Vessel is segmented by thresholding the
original CBF value. The vessel voxels in other tissue probability maps are set to zero to
guarantee mutually occlusive segmentations. Tissue probability maps on a representa-
tive dataset are shown in Fig. 1. The following reconstruction does not heavily depend
on the segmentation accuracy, since each tissue dictionary is learned from over 10,000
patches and represents dominant patterns in the training patches.

2.2 Tissue-Specific Dictionary Learning

Based on the tissue classification from the previous section, we obtain M sets Sm of
training patches, m = V essel,GM,WM,CSF , by classifying a patch y from a train-
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Fig. 1. Brain tissue classification by the automatic algorithm on the median map. (a) A slice in
the enhanced CTP data (b) Median map. Probability maps of (c) Vessel (d) Gray matter (e) White
matter (f) CSF.

Algorithm 1 The framework of online dictionary learning in mini-batch mode.
Input: Initialized dictionary D0 ∈ Rn×k, input data yi ∈ Rn, number of iterations T , regu-
larization parameter λ ∈ R.
Output: Learned dictionary DT .
A0 = 0, B0 = 0.
for t = 1→ T do

Randomly draw a set from Y : yt,1, yt,2, . . . , yt,τ .
for i = 1→ τ do

Sparse coding: αt,i = argmin
α∈Rk

1
2
‖yt,i −Dt−1α‖22 + λ‖α‖1.

end for
At = βAt−1 +

∑τ
i=1 αt,iα

T
t,i, Bt = βBt−1 +

∑τ
i=1 yt,iα

T
t,i,

where β = θ+1−τ
θ+1

, and θ = tτ if t < τ , θ = τ2 + t− τ otherwise.
Dictionary update: Compute Dt, so that:
argmin

D

1
t
σti=1

1
2
‖yi −Dαi‖22 + λ‖αi‖1 = argmin

D

1
t
( 1
2
Tr(DTDAt)− Tr(DTBt)).

end for

ing image to class i if more than 50% of voxels in the patch y belongs to class i. Voxels
from other classes are then removed from the patch.

To learn the tissue-specific dictionary Dm, m = V essel,GM,WM,CSF , we
use the recently developed online learning algorithm [11] which is able to update the
dictionary with every batch of new training samples and avoids the time-consuming
reconstruction of the entire dictionary when new samples come. Given a set of high-
dose CBF patches Y m = {ymi }Ni=1 for a specific tissue type m, each as a column
vector of sizeN . αi inRK is a sparse vector to make Dαi an approximation to ymi with
certain error tolerance. Am = [α1, . . . , αN ]. We seek the dictionary Dm in RN×K in
that minimizes

min
Dm,Am

N∑
i=1

‖ymi −Dmαi‖2 + µ2‖αi‖1 (1)

The framework of online dictionary learning is depicted in Algorithm 1. The dictio-
nary is updated efficiently using block-coordinate descent based on stochastic approx-
imation. Because it only exploits a small batch of newly coming data in the dictionary
update step, it is therefore much faster than K-SVD or other off-line learning algorithms.
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Since computational efficiency is very important in our framework, we can efficiently
update the tissue-specific dictionaries with newly coming data using online learning.
Moreover online learning also does not require the loading of all data at the same time,
which is unfeasible in clinical practice, and results in less memory cost.

2.3 Weighted Sparse Deconvolution

Let’s assume dynamic CTP data C in RN×T composed ofN tissue enhancement curves
(TEC) at voxels of interest (VOI) [x, y, z]T and T time points. The residue impulse
function (RIF) is represented by R in RN×T , indicating the delaying of the remaining
contrast tracer in the VOI. f in RN is the CBF map to be estimated and D is the learned
dictionary. The deconvolution step in SPD algorithm computes the CBF map of low-
dose CTP data using both temporal convolution model and tissue-specific dictionary-
based spatial regularization by solving:

J = µ1‖Cm −CaR
m‖22 + ‖fm −Dmα‖22 + µ2‖α‖1 (2)

where Cm, Rm, Dm and fm are the corresponding TEC, RIF, dictionary and CBF
for tissue class m for a patch of size N × N . The final global CBF parametric map is
generated by averaging the areas of neighboring patches with overlap of one pixel.

Eq. (2) is solved by an EM style algorithm with iterative employment of two pro-
cesses: 1) sparse coding process which minimizes with respect to α with f fixed, 2)
quadratic solver which efficiently minimizes this simplified linear inverse problem, as
in [4]. Two procedures are iteratively employed to obtain fm and αm for each tissue
type. Proper initialization in Eq. (2) with the output of cTSVD poses the optimization at
a good start point and is supposed to mitigate local minima. We also observe our results
are quite stable with respect to the training dataset.

The probability map of each tissue class is obtained by employing the model-based
segmentation algorithm [10] on the median map of the low-dose CTP data. For ev-
ery tissue class m, a tissue-specific patch f̂mi is reconstructed using the corresponding
tissue-specific dictionary of tissue class m. The patch f̂mi is then weighted by the prob-
ability map of class m for patch fi and all probability-weighted tissue-specific patches
are summed together to obtain the final reconstruction.

Using tissue-specific dictionaries to enhance low-dose CTP maps, SPD obtains
three additional advantages: 1) Segmentation information is incorporated into the dic-
tionary learning and reconstruction. 2) Each tissue type has sufficient atoms in the
tissue-specific dictionary to reconstruct. 3) Tissue specific parameter settings can be
employed according to the spatial smoothness of each tissue class.

3 Experiments

To evaluate the performance of the proposed tissue-specific sparse deconvolution (TS-
SPD) method, we apply it to a cerebrovascular disease dataset of 20 cases CTP scanned
at tube current 190mA from our medical institute. Out of 20 subjects, 10 are used as
training and validation (6 with CTP deficits in the brain and 4 normal), and the re-
maining 10 are used for testing purpose (5 with CTP deficits and 5 normal). For all
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experiments of SPD, the dictionary used are of size 64× 256 designed to handle perfu-
sion image patches of 8 × 8 pixels with 256 atoms in the dictionary. We download the
online dictionary learning for sparse representation code from the authors’ website4,
and the model-based brain segmentation code5. The optimal parameters are obtained
empirically from the training and validation dataset are: µ1 = 0.01, 0.02, 0.04, 0.08
and µ2 = 0.2, 0.4, 0.8, 1 for vessel, GM, WM and CSF. The threshold for vessel seg-
mentation is 70 mL/100g/min on the CBF map, as found to be the optimal value in our
empirical experiments.

Fig. 2. Left: Global dictionaries learned using
K-SVD. Right: Tissue-specific dictionary for
white matter. The global dictionary is dominated
by high-contrast, edge-like atoms, while the
tissue-specific dictionary for WM has more low-
contrast, fine structured atoms, as highlighted by
red boxes.

Since repetitive scanning of the same
patient at different radiation doses is
unethical, correlated Gaussian noise is
added to the high-dose CTP data to sim-
ulate low-dose CTP data at I mA fol-
lowing the practice in [12]: I = (K2 ·
I0)/(K

2 + σ2
a · I0), where σa is the

standard deviation of the added noise,
I0 = 190mA is the tube current at
high-dose, K = 103.09mA

1
2 is a con-

stant. Low tube current of 15.6 mA was
simulated by adding correlated Gaussian
noise with standard deviation of 25. CBF
maps computed from CTP data obtained
at high tube current of 190 mA were
regarded as the reference standard. We
present both the visual and quantitative
results to demonstrate performance of the
proposed method, with the comparison to
cTSVD [13] and KSVD-SPD [3].

Tissue-specific dictionaries: Figure 2 shows the globally learned dictionary us-
ing K-SVD and the tissue-specific dictionary for white matter. The global dictionary is
trained on a dataset of 40,000 8×8 patches of high-dose CBF perfusion maps randomly
sampled from 10 training subjects and initialized with the redundant DCT dictionary.
Each tissue-specific dictionary is trained using 10,000 8× 8 patches of the correspond-
ing tissue category from the same training subjects. We could observe from the global
dictionary that high-contrast patches with edges and corners dominate the dictionary
atoms. In comparison, the tissue-specific dictionary for white matter preserves the tex-
ture and image characteristics for this tissue class.

CBF perfusion map: We then compare three methods by visually observing the
estimated CBF perfusion maps of two patients. As shown in Figs. 3, among the three
low-dose CBF maps, the CBF maps generated using our proposed TS-SPD algorithm
recovers the information of high-dose CBF maps from the low-dose CTP data with best
overall performance. The arteries and veins as well as the micro-vessels are better de-
fined, while the delicate structures of the white matter and CSF are preserved. While

4 http://spams-devel.gforge.inria.fr/
5 http://sourceforge.net/projects/niftyseg/
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Fig. 3. CBF maps and zoomed-in regions. A 63-year-old female with acute stroke has an ischemic
region in the right hemisphere of the brain (1st row) and a 35-year-old female with left middle
cerebral artery (LMCA) perfusion deficit caused by aneurysmal SAH (2nd row). (Note represen-
tations in medical images display the sides of the images in reverse order) LMCA and RMCA
are enlarged for comparison next to each image. The low-contrast tissue classes in the LMCA
and RMCA regions are highly noisy in cTSVD images, and are over-smoothed by KSVD-SPD,
while TS-SPD preserves the subtle variations and are closest to the ground truth.

Table 1. Quantitative comparison of PSNR (dB) in CBF maps at low-dose are reported for 10
CTP cases by cTSVD, KSVD-SPD and our TS-SPD. SAH and stroke indicate the two subjects
in Fig. 3. The best performance is in bold-face type.

PSNR Brain GM WM
Stroke SAH All data Stroke SAH All data Stroke SAH All data

cTSVD 43.51 34.87 33.57 12.81 15.94 15.91 19.99 18.65 17.82
KSVD-SPD 45.80 37.11 34.91 17.53 18.08 17.88 22.80 19.75 19.41

TS-SPD 47.84 38.38 36.65 18.92 19.66 19.91 25.02 22.56 22.28

the noise is greatly suppressed in the low-dose CBF maps for both enhancement al-
gorithms, KSVD-SPD tends to smooth the image too much, especially the non-vessel
structures. Our TS-SPD algorithm overcomes these drawbacks and preserves both the
vessel boundaries and the low-contrast structures of WM and CSF with tissue-specific
dictionaries and adaptive parameter settings for each tissue class.

Asymmetry: To visualize the asymmetry in the left and right middle cerebral artery
in Fig. 3, we compute the intensity difference maps between LMCA and RMCA for
three methods, as shown in Fig. 4. The intensity difference map of cTSVD is too noisy
to identify the asymmetry of LMCA and RMCA vessel structures, while KSVD-SPD
blurs the details of the vessel structure. The proposed method generates the difference
map with better contrast and spatial resolution for diagnosis of asymmetry in LMCA
and RMCA.

Quantitative comparisons: We report the PSNR (peak signal-to-noise-ratio) val-
ues for two cases in Fig. 3 and all testing subjects on the whole brain, GM and WM
in Table 1. The GM and WM are the tissue regions in the brain affected by stroke
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Fig. 4. Zoomed-in regions of the intensity difference maps between LMCA and RMCA of the
acute stroke (left) and SAH (right) patients estimated by (a) Ground truth (b) cTSVD (c) KSVD-
SPD (d) Proposed TS-SPD. Arteries are delineated in red, CSF in blue.

and other ischemic processes. The proposed method again achieves the highest PSNR
(usually 2∼3 dB higher) in all cases, allowing for better discrimination ability of these
brain regions, by preserving the tissue structures for differentiation of infarct core and
ischemic penumbra in specific regions of the brain assisting neuroradiologists in diag-
nosis.

Table 2. Quantitative comparison of
the normalized distance between is-
chemic and normal tissue clusters. The
best performance of each column is in
bold-face type. (Unit: mL/100g/min)

Method Stroke SAH All data

cTSVD 42.71 46.03 49.91±5.12
KSVD-SPD 57.19 53.96 55.62±3.91

TS-SPD 63.25 56.64 59.60±3.82

Ischemic voxels clustering: We also perform
the clustering experiment as in [3] by aggregating
all voxels (within VOI) from the normal hemi-
sphere into a single “normal” cluster and the
pathologic hemisphere into an “abnormal” clus-
ter. To quantify the separability between normal
and ischemic CBF values, we define the dis-
tance between these two clusters as: d = (m1 −
m2)/

√
σ2
1/n1 + σ2

2/n2, where m1, m2 are the
means, and σ1 and σ2 are the standard devia-
tions of CBF in the normal and ischemic clusters,
n1 and n2 are the number of normal voxels is-
chemic voxels, respectively. We hypothesized that
our TS-SPD algorithm to produce larger distance
d, that is, to more definitely differentiate between
normal and ischemic tissues. Table 2 shows the
distance between normal and abnormal clusters
for the two cases in Fig. 3 and all subjects with CTP deficits. TS-SPD separates the
two clusters with greatest distance. One-tail paired t-test yields p = 0.051 between
cTSVD and KSVD-SPD, and p = 0.015 between KSVD-SPD and TS-SPD.

4 Conclusion

In this paper, we have proposed a novel tissue-specific dictionary learning and decon-
volution approach for CBF perfusion map enhancement in low-dose cerebral CTP. We
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take advantage of the distinctive image information of each tissue category available
in the high-dose CBF maps to recover the missing texture and structural information
in the low-dose CBF maps. This is achieved by performing a spatio-temporal sparse
deconvolution based on tissue-specific dictionaries learned from high-dose CBF map
segmentation. Our method consistently outperforms the state-of-art methods, especially
in GM and WM where the cerebrovascular disease diagnoses mostly rely. In the future,
we will evaluate the feasibility of applying our method in clinical practice using CTP
acquired at low radiation dose in patients with cerebrovascular disease.
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