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Abstract: Feature density approximation (FDA) based visual object appearance representation is emerging as an 
effective method for object tracking, but its challenges come from object’s complex motion (e.g. scaling, 
rotation) and the consequent object’s appearance variation. The traditional adaptive FDA methods extract 
features in fixed scales ignoring the object’s scale variation, and update FDA by sequential Maximum 
Likelihood estimation, which lacks robustness for sparse data. In this paper, to solve the above challenges, a 
robust multi-scale adaptive FDA object representation method is proposed for tracking, and its robust FDA 
updating method is provided. This FDA achieve robustness by extracting features in the selected scale and 
estimating feature density using a new likelihood function defined both by feature set and the feature’s 
effectiveness probability. In FDA updating, robustness is achieved updating FDA in a Bayesian way by 
MAP-EM algorithm using density prior knowledge extracted from historical density. Object complex 
motion (e.g. scaling and rotation) is solved by correlating object appearance with its spatial alignment. 
Experimental results show that this method is efficient for complex motion, and robust in adapting the 
object appearance variation caused by changing scale, illumination, pose and viewing angel. 

1 INTRODUCTION 

Visual object tracking is widely demanded in 
traffic management, pedestrian monitoring, and 
security inspection. The challenge of visual object 
tracking is that the changing illumination, 
changing object’s pose, changing viewing angel 
and partial occlusion will all change the object’s 
scale, size and visible parts. Thus the low-level 
image features can not be constantly detected 
across frames without variations, as the feature 
probability density function (pdf) of the object 
does not rely on every exact local feature the 
methods representing an object’s as its pdf 
approximations by feature density approximations 
(FDA) have emerged as a effective object 
representation for tracking. Those can be divided 
into the two groups: parametric approximation and 

non-parametric approximation. The parametric 
approximation methods (e.g. Raja, Yu, Jepson  et 
al) used a Gaussian Mixture Model (GMM) to 
approximate the object’s feature density and 
Expectation-Maximization (Dempster et al) (EM) 
to estimate the GMM parameters. To adapt to 
object’s changing appearance, Raja et al update 
estimate Maximum likelihood (ML) GMM 
parameter online recursively. However, it is not 
able to cope with complex motion (e.g. rotation 
and scaling) because there’s no spatial information 
in their model. Yu & Wu attempted to resolve this 
issue by extending feature vector by pixel 
coordinates and track object in an ML estimation 
process by EM algorithm. Jepson et al developed a 
three components mixture model to represent 
object appearance. They used online ML 
estimation to update the model parameters, but it’s 



 

not robust when observed data are sparse (object 
moving in decreasing scale or resolution). For non-
parametric FDA methods, Comaniciu et al used 
spatially weighted kernel functions to represent 
target object and use mean-shift to determine the 
kernels. Han et al proposal to use On-line learning 
to update kernel density to adapt to object’s 
appearance variation. However, as pointed by 
Carreira-Perpinan, the kernel density derived by 
meanshift developed by Comaniciu et al in the 
above methods is the ML estimation; it is not 
capable in providing a robust estimate with sparse 
data. 
 

In this paper, to solve the above limitations, we 
propose a robust multi-scale adaptive feature 
density approximation (FDA) object representation 
method for tracking, and provide its robust 
Bayesian updating method using density’s prior 
knowledge from historical frames. We also solve 
object complex motion by correlating object 
appearance with its spatial alignment. Experiment 
result shows the effectiveness of this method. 

 
This paper is organized as follow: in Section 2 

we introduce the object representation for tracking, 
and robust representation updating method; in 
Section 3 the experiment and results are presented 
and discussed; and the paper is concluded in 
Section 4. 

2 ROBUST FDA FOR OBJECT 
REPRESENTAION AND MAP 
FDA UPDATING 

In the proposed object representation method, 
scale robustness is achieved in both feature 
extraction and density estimation. The image 
features are extracted from image patches in the 
selected scale and size according to local image 
pattern. and the effective probability for the 
features from each patch is defined by the size of 
the patch.   Using a new likelihood function 
defined by the feature sets and their effective 
probability, the Feature density is estimated 
robustly to object changing scale.  Based on this 
representation, we also proposal how to measure 
the compatibility between feature set and its 
density representation for object tracking. To adapt 
to an object’s changing appearance, we provide the 
MAP-EM updating FDA updating method using 
the density’s conjugate priors to transfer priori 

knowledge in historical frames to current 
estimation in a Bayesian way. To cope with object 
complex motion (e.g. rotation and scaling) we 
correlate object appearance with the appearance’s 
spatial alignment by extend feature with spatial 
coordinates in the coordinate system of the object 
itself. The following gives the detail description 
for our method. 
 

2.1 Scale robust feature Extraction 

In our method, scale robust FDA is achieved in 
both the stages of feature extraction and feature 
density estimation. As image feature appears in its 
own scale and size, the robust features should be 
extracted accordingly. As in our previously works 
by Liu & Yung, the method partition a frame into 
multi-scale patches w.r.t. the scale and size of local 
feature, and extract features on these patches. The 
process for feature extraction is depicted in Fig. 1, 
a result is demonstrated in Fig. 2.  

 Figure 1: Robust feature extraction 
This figure depicts the process of scale-robust feature extraction. 

Diagram A describes the data flow in this process; diagram describes 
how a frame is partitioned into multi-scale patches. Here Lindeberg’s 
multi-scale decomposition is used; as suggest by Timor et al,  patches’ 

scale and size are select by comparing entropy across scale. 
 
After frame partition, an effective 

probability creb
iP for each patch is defined on the 

number of pixels in the patch, to control the 
contribution of each patch’s feature in FDA. 

creb
iP is defined as: 

max/creb
i iP Size Size=  (1)

To solve complex motion (e.g. rotation, scaling), 
the model should acknowledge the object’s pose. 
This is achieved through correlating the object 



 

appearance feature with its spatial alignment by 
extending the features’ dimension with the 
coordinate of patches’ geometry centre in the 
coordinate system of the object itself (As depicted 
in Fig. 3) The transformation between the 
coordinate system of the object 1 1( , )x y  and the 
coordinate system of original frame ( , )x y is:  

1 1 cos sin
( , ) ( , )[ ]

sin cosx yx y x m y m
θ θ
θ θ

= − −
−

, 
(2)

 
where ( , )x ym m is the center of the object, θ is the 
rotation angel of object. 

 

 
Figure 2: Multi-scale patches after image partition 

Image 1 is the original image; image 2 is the partition result. It should 
be noted that the singularity regions are split into small patches in the 
fine scale. In the homogeneous regions, large patches in a coarse scale 

are retained. Image 3 is the final entropy map of each patch. 
 

 
Figure 3: Coordinate system of the frame (blue) 

and. coordinate system the object (green) 

2.2 Robust Feature Density 
Approximation 

In this paper we approximate the object’s feature 
density by a Gaussian Mixture Model: 

1
( | ) ( | ; );  { ; };  { , },

M

i j i j j j j j j j
j

P p θ
=
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(3)

where 
jω is its mixing coefficient, 

1/21/2 11( | ; ) (2 ) exp{ ( ) ( )}
2

T
i j j j j jp θ π −− −= ∑ − − ∑ −x ω x μ x μ is 

a Gaussian component. 
The robust FDA should be robust to both 

object’s scale variation and the consequent 
variation in image partition. As the features of 
large patches correspond to the statistics of more 
pixels, they will contribute more in FDA than the 

feature from smaller patches. Therefore, a new 
likelihood function defined by both the feature 
observations and their effective probability, is used 
in GMM estimation. The likelihood function is 
defined as: 
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(4)

where
ijz is hidden variable indicating ix is 

generated by which one of the GMM components. 
Using ( )l Ω in eq. (4), the Maximum Likelihood 
estimated for GMM can be computed by EM 
algorithm: 

,
}

2
)()(

exp{)(

}
2

)()(
exp{)(

],|[
:

1

,1
2
1

,1
2
1

∑
=

−−

−−

−∑−−
∑

−∑−−
∑

=

=

−

M

l

k
ji

k
j

Tk
jik

jj

k
ji

k
j

Tk
jik

jj

k
iijij

p

p

xzEh
stepE

μxμx
ω

μxμx
ω

θ

(5)

 

1 1

1

1 1

1 1

1 1

1

:

( )

( )( )
,

N N
creb creb

j ij i i
i i

N N
k creb creb
j ij i i ij i

i i
N

k k T creb
ij i j i j i

k i
j N

creb
ij i

i

M step

p h P P

h P h P

h P

h P

= =

+

= =

+ +

+ =

=

−

=

=

− −
∑ =

∑ ∑

∑ ∑

∑

∑

ω

μ x

x μ x μ

 

(6)

 
Fig. 4 compares effectiveness of the new 

likelihood for FDA with conventional method 
which doesn’t consider the relationship between 
the size of the patch and the contribution of its 
feature in the FDA. Our method solves the 
problem in conventional method. 

Based on this FDA object representation, our 
method provides measure for tracking by 
measuring the compatibility of an image region’s 
feature set to a GMM by: 
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Figure 4: Comparison of FDA in simulation image 

In Figure 4, image 1 is the original image, image 2 is the image 
histogram, and image 3 is the histogram estimated by conventional 
method; whereas image 4 is the estimation by the proposed method. 

The proposed method produces an accurate estimation. 
 

2.3 MAP-EM model updating 

As object appearance change with changing 
illumination, scale, pose, and viewing angel, its 
GMM appearance representation thus should be 
updated to adapt its changing appearance. As 
compared by Gauvain et al and Goldberger et al, 
MAP estimation can be more robust the ML for 
sparse data (i.e. the feature set) because it utilize 
the prior knowledge of the model parameter. 

We improve the robustness of model updating 
for sparse date by using the model prior knowledge 
in GMM conjugate priors (ref. Gamerman) and 
update GMM by its MAP estimate in a Bayesian 
way. To achieve scale robustness we also use the 
new likelihood function in e.q.(4). We derived the 
updating methods using MAP-EM algorithm. 
MAP estimation estimate the by maximizing the a 
posteriori probability ( ) ( ; ) ( )MAP pΩ = Ω ΩXl l , 
thusΩ is estimated by: 

arg max{ ( ; ) ( )}p
Ω

Ω = Ω ΩXl , (8)

The conjugate prior for the GMM is:  
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where ( )D ω |α  is the Dirichlet density distribution 
for mixing coefficients, and 1Kα > is its parameter. 
For the mean vector and the precision matrix (the 
inverse of covariance matrix) in each GMM 
Gaussian component, their conjugate priors are the 
normal distribution and the Wishart distribution. 
As suggested in Goldberger et al, give the 
parameters ( , , ), 1...j j j j Mω =μ Σ of the GMM of 
last time step, the parameters of the GMM 

conjugate prior at the current time step can be 
extracted as: 
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Based on the conjugate prior and the new 
likelihood function, the auxiliary function for MAP 
estimation becomes: 
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Therefore we obtained the MAP-EM GMM 
updating method as: 
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3 EXPERIMENTAL RESULTS 

In the experiment, patches’ average value in Lab 
colour space and centre coordinate are used as the 
image feature vector; besides small patches, the 
effectiveness of the non-homogeneous patches’ 
features are also tuned down according to entropy. 
The state of the object is denoted as: 

1 2( , , , )T T φ α=s  where 1 2, , , ,T T φ α are the x, y 
translation, rotation, and scaling of the object. The 
object appearance is initialized using eq.(5), eq.(6); 
then visual object is tracked by estimate the 
optimal object state using the measurement form 
the proposed FDA appearance representation in a 
particle filter (Arulampalam et al) framework. 
Specifically, the posterior probability of s is 



 

approximated by a set of weighted discrete 
particles ( ) ( ) ( )

1
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estimate is obtained by choosing the particle with 
the largest weight. The posterior probability are 
recursively updated by predict new particles and 
measure their weights by eq.(7) with GMM and the 
feature set in image region corresponding to each 
particle. I.e., the predicted particle is sampled from: 
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where and 
iy is feature set in the image region of 

particle it . In model updating the GMM prior 
knowledge is extracted form the last frame by  
eq.(10), and the MAP-EM method in eq.(12), 
eq.(13) is used for GMM updating.  

 
Three experiments are given in Fig. 6~Fig.8. In 

Fig. 6, the vehicle moves in decreasing scale and 
change its pose by steering anti-clock wise. The 
proposed method accurately tracks it with correct 
scaling and rotation estimate, and capture its pose 
precisely even part of the object has moved out of 
the image. In Fig. 7 & Fig. 8, tracking with 
significant object appearance variation is tested. In 
the two experiments, vehicles’ visible parts change 
with its changing steering angel and view point; 
and the shadow in Fig. 7 and highlight in Fig. 8 
were cast onto the vehicles when they move into 
the upper part, they all bring significant 
appearance variations to vehicles. The feature set 
for GMM updating becomes sparse as the number 
of patches decreases with vehicle’s decreasing 
scale. But in both experiments the proposed 
method tracks the vehicle accurately with correct 
pose (scaling & rotation) estimate.   

4 CONCLUSIONS 

In this paper, to solve the above limitations in FDA 
based object representation method in tracking, we 
propose a robust multi-scale FDA object 
representation method for tracking, and provide the 
robust FDA updating method. Scale robustness is 
achieved by both robust feature extraction and 
robust density estimation. The Bayesian model 
updating method is proposed using model prior 

knowledge extracted from historical model. 
Experiment shows the effectiveness of the method. 
Our future directions could include explorations to 
different features and tracking by multiple feature 
fusion. Finally the aim is to develop it to a multiple 
interacting objects tracking method. 

 
Figure 5: Object tracking and FDA model updating 
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Figure 6: Tracking with complex motion and scale variation

 
Figure 7: Tracking with complex motion, scale/pose/illumination/appearance variation  

 
Figure 8: Tracking with appearance variation caused by changing illumination, changing pose, and changing scale 


