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ABSTRACT

Auto parking techniques are attracting more attention these
days. In this paper, we develop an image-based method to
estimate the depth contour in parking areas. Our algorithm
is an extension of the canonical appearance-based models
for object recognition. One challenge in object recognition
is that limited training dataset can hardly represent all kinds
intra-class and inter-class variations. We propose to augment
the limited training dataset by on-the-spot learning from test
data. The information is obtained by applying a fast block
based stereo algorithm to estimate a rough disparity map.
New “soft” samples are created to augment the training sam-
ple library. We present improved classification performance
by using the proposed technique.

Index Terms— auto parking, object recognition, classifi-
cation, stereo

1. INTRODUCTION

Automatic parking system is one of the interesting topics in
developing intelligent vehicles. J.D. Power’2001 Emerging
Technology Study shows that over 66% of consumers are
likely to purchase parking assistance [1]. In this paper, we
are interested in automatic detection of vacant parking space
by analyzing the content of videos captured during driving
process. The application scenario is illustrated in Fig 1. A
camera is set up on the host vehicle, facing the sidewalk
with axis 30◦ below the horizon and50◦ vertical field of
view (FOV). The host vehicle is moving at almost constant
speed (less than 15mph) in the parking area. Our goal is to
reconstruct the complete depth contour of the scene.

Some previous work [2] explores image analysis tech-
niques for parking space detection using images taken from
a fixed camera viewing from the top of a parking area. This
would be helpful when such camera monitoring system is
available. However, many parking areas don’t have such sys-
tems.

The application is basically an image understanding
task: to recognize object categories from images. In this
application, object categories of interest are ”vehicle” and
”background”. The problem of object recognition has been
extensively studied. Two main issues in developing object
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Fig. 1. Camera set up. The goal is to create depth contour.

recognition system are feature representation and classifi-
cation scheme. We build our algorithm upon commonly
used appearance-based model. More specifically, we follow
the texton-based model developed in the context of texture
recognition[3].

The fundamental challenge in object recognition is to
handle a wide variety of transformations due to illumination
change, viewpoint change, and intrinsic visual differences
from the same object category. It’s very difficult to find a
compact representation of object categories which is invari-
ant to intra-class variations and yet discriminative enough to
distinguish inter-class differences. Also it’s hard to learn all
kinds of intra-class and inter-class variations from limited
training dataset.

Another seemingly attractive approach is to reconstruct
3D geometry of the scene, which provides orthogonal infor-
mation in addition to the appearance for object recognition.
However, most state-of-art 3D reconstruction algorithms
count on associating corresponding points in different views
to retrieve depth, thus assuming Lambertian surface. This
is not true for our application because car body and window
exhibit strong specular reflection (mirror-like reflection).

Therefore we do not target at precise 3D reconstruction.
Instead, we propose to enhance the training dataset by learn-
ing rough depth information on-the-spot from test data, thus
specifically tune the appearance-based model to better fit the
test data.

2. ALGORITHM DESCRIPTION

We detailed the proposed algorithm in this section. Section
2.1 describes the complete system flow on a high level. Sec-
tion 2.2 briefly summarizes the texton-based model for rec-
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Fig. 2. Algorithm flow diagram

ognizing object class. Section 2.3 explains our proposal in
details.

2.1. Algorithm Overview

The system consists of four major steps, as shown in Fig
2. First, in pre-processing step, a fast block matching based
stereo method is applied to pairs of consecutive frames, to
generate a rough disparity estimation, which is then used to
create “soft” samples. Those “soft” samples are added to the
pre-collected training dataset to augment the training sample
library, which is used in appearance-based classification.In
the end, post-processing step generates a score for each frame
indicating how likely the frame is in class 1 (“vehicle”) or
0 (“background”). Finally, a complete depth contour of the
scene is created.

2.2. Texton-based Model

In texton-based model for object recognition, images are rep-
resented by histograms over a dictionary of “visual words”
(also called “textons”). The visual words are K-means clus-
tering centers of features. Features are filter responses gen-
erated by convolving the image with a filter bank. The fil-
ter bank is a set of orientation and spatial frequency selective
linear filters. We follow [4] to use the one made of 3 Gaus-
sians (σ = 1, 2, 4), 4 Laplacian of Gaussians (LOG) (σ =
1, 2, 4, 8), and 4 first order derivative of Gaussians (DOG)
(σ = 2, 4 for bothx− andy− directions). All filters are 5x5
windows. All filters in the filter bank are applied to a gray
image to create3 + 4 + 4 = 11 dimensional feature vectors.

Features are computed on every pixel, aggregated over all
training images and then clustered using K-means approach.
The cluster centers (textons) define a visual dictionary. We
use the dictionary size of 50 textons. After filtering an image,
each pixel is mapped to the closest texton in the dictionary,

thus a normalized histogram of textons can be generated on a
region or image basis.

We apply the texton-based model on a superpixel basis.
Every frame is segmented into superpixels using graph based
segmentation [5]. Each superpixel is a data sample repre-
sented by a histogram of textons. In training stage, all man-
ually labeled data samples (pre-collected samples) are col-
lected in a sample library .

2.3. Proposed Method

To augment the training sample library, we generate new
“soft” samples from test data.

Pre-ProcessingStereo processing the test video is the
first step. Every frame is paired with its next frame. We
use block based matching stereo because it’s fast and good
enough for a rough estimation.

Every frame is resized to300 × 200, and the block size
used is8 × 8. For all 8 × 8 blocks whose center(x, y) are
multiples of 4, we search in the same row for the best match-
ing block in the next frame, with disparity value ranging from
0 to 31 pixels. Only when sum of square difference (SSD) of
the best matching block is obviously better than the second
best match, that is, ratio of the best matching SSD to the sec-
ond best is less than 0.8, then centers of two matching blocks
are counted as a pair of correspondences with valid disparity
estimation. Fig 3 shows an example disparity map (brighter
pixels indicate larger disparity, black pixels indicate nodis-
parity estimate).

left view right view disparity

Fig. 3. block based stereo matching and disparity result.

There are two ways to distinguish two classes: 1)“vehi-
cle” is likely to have larger disparity than average, 2) in “back-
ground” image, disparity of the upper region of the image is
smaller than that of the lower region. We implement the idea
as following (Fig 4).

1. Average disparity (Fig 4(a) cyan curve) of each frame
is computed as the mean of all valid disparities in the middle
of the image. The middle is defined as in the cyan box in
Fig 3, with 8 pixels extension to the left and right from the
center of the image. D1 (Fig 4(b) cyan curve) is low pass
filtered average disparity. Average disparity in the upper 2/3
and lower 2/3 region of the image is computed in the same
way, illustrated as D2 and D3 in Fig 4(b).

2. If a framei satisfy D1(i)/average(D1) > 1.4 or
D2(i)/D3(i) > 1 , then the frame is assigned label 1 (“vehi-



cle”); otherwise the frame is assigned label 0 (“background”).
The class label is shown in Fig 4(c).

3. Low-pass filter the class label to give a score for each
class (Fig 4(d)), higher score indicates the frame more likely
to contain “vehicle” in the middle cyan box.
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Fig. 4. (a) average disparity (cyan: full image, blue: upper 2/3
image, red: lower 2/3 image; ). (b) lower pass filter (a). (c)
assigned class label (1:“vehicle”, 0:“background”). (d) low
pass filter (c).

Augment training datasetIn pre-processing step, a score
is assigned to each frame, indicating how likely it contains
“vehicle” in the middle. After segmenting an image into su-
perpixels, if a superpixel’s center falls into the middle cyan
box or more than half area of the superpixel falls into the
cyan box, the superpixel is added to the training sample li-
brary, associated with the frame score indicating its probabil-
ity of coming from class 1. These new “soft” samples origi-
nate from the test data, thus able to captures the characteristics
of the test data. The “soft” samples are combined with pre-
collected samples to create a larger training sample library.

Classification We do experiments with two commonly
used classification schemes: nearest neighbor and Gaussian
model . When using nearest neighbor classifier, each super-
pixel finds its closest 10 samples in the training sample li-
brary. The average score of the 10 samples is the score for the
test sample. If the score greater than 0.5, the test sample is
assigned label 1; otherwise assigned label 0.

When using Gaussian model, we model the set of his-
tograms for each class using Gaussian distribution by

P (H|C) =

T∏

i=1

N (Hi|HCi, β
−1

Ci
) (1)

whereHi denotes theith bin of a histogramH, T denotes the
size of the visual dictionary,HCi andβCi denote mean and
variance of distribution of theith bin in classC.

With the augmented training sample library,HCi andβCi

are learnt as following:
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Fig. 5. (a) test frame (b) classification output (c)bv curve (d)
final score for each frame

H1i =

∑
H

wH · Hi∑
H

wH

, β1i =

∑
H

wH · (Hi − H1i)
2

∑
H

wH

(2)
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∑
H

(1 − wH) · Hi∑
H

(1 − wH)
, β0i =

∑
H

(1 − wH) · (Hi − H0i)
2

∑
H

(1 − wH)
(3)

wH is the score of sampleH, which is the probablity of
this sample in class 1. In classification step,P (H|C) is
computed using Eq (1), and the superpixel is assigned label
Ĉ = argmaxC P (H|C).

It would be difficult to evaluate results by checking the
classification result on a superpixel basis, because that re-
quires to provide ground truth class label for every superpixel
in every test frame. Each video includes about 1000 frames
and each frame includes about hundreds of superpixels, mak-
ing manual labeling the ground truth a hard task. Instead, we
do the following post-processing to output a score for each
frame, and evaluates results on a frame basis.

Post-processingIf a frame contains a vehicle in the cen-
ter, the bottom position of a vehicle is usually large (1/3 of
image height); otherwise most region is ground and the bot-
tom position of a vehicle is very small (often 0 or slighter
larger than 0). The bottom positionbv is estimated using the
maximum row index of pixels in class 1 in the middle cyan
box, as shown in Fig 5(b). Connectingbv for all frames gen-
erates the plot in Fig 5(c). Ifbv(i) > im height/3, framei
is labeled 1; otherwise labeled 0. Then the class label is low
pass filtered to generate a score for each frame as shown in
Fig 5(d). This score is used for ROC analysis in section 3.

To create a depth contour, a “hard” label is assigned for
each frame. Frames with a score higher than 0.5 is labeled
1, and 0 otherwise. Average (im height − bv) of a segment
of continuous frames assigned label 1 approximates distance
between the “vehicle” in those frames and the host vehicle.
Average (im height − bv) of all frames assigned label 0 ap-
proximates distance of the “background” from the host vehi-
cle. Finally, the distance of all frames are connected to create
a “depth contour” of the complete scene as shown in Fig 6,



providing driver with an “overview” of the parking area.
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Fig. 6. Reconstructed depth contour. Center bar shows label
assigned in post-procesising(red for class 1, green for class
0). Ground truth labels are shown below the frame.

3. EXPERIMENTS

Training dataset are 80 frames randomly sampled from two
reverse parking videos. We manually label the “vehicle” re-
gion in each frame. There are totally 1368 samples in class
1 and 1165 samples in class 0 in the training dataset. Testing
dataset includes 4 parallel parking videos and 3 reverse park-
ing videos, captured in different parking areas. Average video
length is about 1000 frames for both training and testing.

The ground truth of each test frame is manually labeled.
We check the middle cyan box of each frame, if all pixels are
“background”, it’s labeled class 0; if all pixels in upper 1/3
of the cyan box are “vehicle”, it’s labeled 1; otherwise, it’s
labeled class 2 meaning ambiguous class. Some examples are
shown in Fig 6. More than 99.5% of the frames are not labeled
class 2. In the following, we only evaluate quantitative result
on those “un-ambiguous” frames.

We do four comparison experiments, with two choices of
the pre-collected training dataset and two choices of the clas-
sification scheme. For the pre-collected training dataset,ei-
ther the complete training dataset is used or only partial (ran-
domly selected 1/32) of it is used. For the classifier, either
nearest neighbor (NN) or Gaussian model (GM) is applied. In
each experiment, we compare the performance of two cases:
with and without augmenting the training sample library. The
classification and post-processing steps are exactly the same
for both cases. Fig 7 presents ROC curve characterizing TPF
(True positive rate) versus FPF (False positive rate). Table 1
shows quantitative results of ROC area and equal error rate.
In all experiments, augmenting the training sample library
shows better performance. It’s worth noticing that GM per-
forms much better NN without augmentation when training
dataset shrinks. This is because GM is a parametric model,
while NN relies on large number data points to capture class
variations.
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Fig. 7. ROC curve when using full and partial (1/32) of the
training dataset. Each case tested with (green) and w/o (red)
augmenting the training dataset.

Table 1. ROC area and Equal Error Rate
full partial

ROC area EER ROC area EER

NN w/o aug. 0.94 0.11 0.63 0.48

with aug. 0.97 0.06 0.94 0.08

boost 0.03 0.05 0.31 0.40

GM w/o aug. 0.86 0.19 0.85 0.20

with aug. 0.97 0.06 0.95 0.07

boost 0.11 0.13 0.10 0.13

4. CONCLUSION

In this paper, we propose to augment the appearance-based
classification model by on-the-spot learning from the test
data. We apply this idea in the application scenario of detect-
ing parking space. Experiments show improved recognition
performance by using the proposed technique.
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