REAL TIME STEREO VISION USING EXPONENTIAL STEP COST AGGREGA TION ON
GPU

Wai Yu', Tsuhan Chen?, James C. Hoe!

ICarnegie Mellon University, School of Electrical Computer and Engineering, Cornellvgrsity

ABSTRACT lief propagation or graph cut to compute the optimal sotutio
In this paper, we propose a local cost aggregation approac%enera_IIy speaking, local algonthms are computatlona_ﬁy .
?xpenswe, and global algorithms produce higher qualgy di

for real time stereo vision on a graphics processing uni fitv map. The top performing stereo algorithms in terms
(GPU). Recent research shows that local approaches bas%?j y map. bp 9 9
accuracy are all global methods [2]. However, those algo-

on carefully designed cost aggregation strategies can OuE'thms typically take several to tens of minutes to compute a

perform many global approaches. Among those local ag-. .) : . S
. . . . disparity map of image size 28384 with 16 dispairty levels,

gregation approaches, adaptive-weight window produces th " . . L

Lo : . L which are not suitable for real-time applications.

best quality disparity map under real-time constraint,ibist Most | ii ; ¢ local h

slower than other local approaches. We propose a very fast hqs reai ime s ereqt sszPeLrJns ugse oca e}[ppro?c ef. on

adaptive-weight aggregation method based on exponentig[ap ics processing unit (). [3] presents interesting

step information propagation. The basic idea is to propmgataccuracy'slo.(t:’r]a (w;ide{)tﬁ c_)f st!x rece;t CtOhSt aggircta_gatlen ap
information from long distance pixels within a few iterati proacnes wi optimization under the real ime con-

We also discuss important techniques of efficient implemen§tra|nt on an ATl Radeon X800 graphics card. Their experi-

tation on GPU platform, which result in 10.5x speed up tharrnents show that a modified version of adaptive-weight win-

a straightforward implementation. Compared to existingdOW approach_ ;,)roposgzd in [4] performs the best in terms of
ccuracy, but it’s relatively slower than other local mets.o

real time adaptive-weight approach, our technique reduc : . .

the computation time by more than half at improved accu- he adapt|ve-we|g_h,t approach pr_"p‘?sed in [4] d_emonstra_tes

racy. Detailed experimental results show that our tecrmiquh'gh accuracy, bUt.'FS too expensive In computation to run'i

is Pareto-optimal among existing real time or near real tim eal ime. [3] simplifies the method in [4] for a better traoke-
etween accuracy and speed.

stereo algorithms in the accuracy-speed trade-off space. . .
There are several papers about real time stereo using

Index Terms— real time stereo, GPU, adaptive-weight semi-global or global approaches on GPU. [5] proposes
a semi-global real time stereo algorithm on ATls Radeon
1. INTRODUCTION XL1800 graphics card. It integrated adaptive-weight aggre
gation along vertical direction with dynamic programming
The goal of stereo vision is to reconstruct disparity mapnfro optimization along horizontal scanlines. The disparitglac
a stereo image pair. A taxonomy and evaluation system prdacy is slightly better than to [3] , and the computation time
posed by [1] is now widely used in evaluating the disparityis about 2x of [3]. [6] proposes a near real time global stereo
accuracy of stereo matching algorithms using a set of benctatching using hierarchical belief propagation. Bettes- di
mark datasets. As [1] suggests, most stereo algorithms coparity accuracy is achieved compared to [5], and computatio
sists of four steps: (1) cost initialization (matching co$t time is about 2.7x of [5].
each pixel at different disparity hypothesis) (2) cost aggr [7] proposes a segmentation-based cost aggregation strat-
tion (aggregate initial costs over spatial support) (3pditty ~ egy that can achieve near real time processing speed on Intel
optimization (decide the disparity level that optimizesag t Core Duo 2.14 GHz CPU, with the best accuracy among the
get cost function) (4) disparity refinement (post-proaegsd State-of-art near real time local approaches on CPU. How-
remove mismatch). ever, both accuracy and speed in [7] are worse compared to
Most existing stereo algorithms can be classified into twaany of the above real time stereo on GPU platforms, showing
categories: local and global approaches. Their majorriffe a certain gap between CPU/GPU processing power for stereo
ences lie in step (3). Local algorithms use Winner-Take-Allvision.
(WTA) strategy, simply taking the disparity level that mini Table 1 summarize all exisitng real time or near real time
mizes the aggregation cost. Global algorithms optimizeamorstereo. We are inspired by the real time adaptive-weight ap-
complicated target functions that consider interactionergg proach in [3]. The adaptive width window approach exhibits
pixels, and thus need global optimization techniques like b high data parallelism, which is very suitable to be accédera

Table 1. Summarize real time or near real time stereo (quan;
1

titative results are given later in Table 3)

GPU | local[3] very fast, good accuracy |
semi-global[5] | slower and better accuracy than local e e e e e e e e e
globall6] slower and better accuracy than semi-global

local(proposed)| faster than[3, 5] at comparable accuracy r - ; ; '
[CPU | local[7] | slower and worse accuracy than any GPU metHi lteration 1, step size =1, impact range (-1,1) !
| 0000000000 000000000000 !
. - 1
on GPU. Though graphics hardware has many more procesi _________________________________1__?_j__________________________________,
ing units than general purpose computing hardware, writing Iteration 2, step size =3, impact range (-4,4) 1
fast code to maximize the GPU hardware utilization is nof| g\:gfiztu range from :
trivial. Our goal is to improve the Pareto efficiency of GPU | ,,.m.....m.m....,,,, |
based real time stereo. That is, to achieve the same accure! m '
with less computing time, or higher accuracy with the samé - - - - - - == - - o= oo oo !

computing time. g Iteration 3, step size =9, impact range (-13,13)

In the following, section 2 explains the proposed algo-| Impact range from

rithm and GPU implementation techniques. Section 3 com!

previous iteration

1

1

1

1

“ 1

pares our technique with existing real time or near real time ——+m6/00036000\5/000$50033000+———— :
0 13 1

concludes the paper.

2. PROPOSED ALGORITHM AND GPU
ACCELARATION

2.1. Algorithm Description

Fig. 1. A simple example of cost aggregation: (a) aggregation
used in [3] (b) exponential step information propagation

Original adaptive-weight in [4]. The basic idea of the matching cost of pixel; at assumed disparity leval Ac-
adaptive-weight approach is to adjust the support-weiht ocording to [4], considering weights in both reference amd ta
each pixel in a given support window. The weight of eachget images can help preserving depth discontinuities ih bot
pixel is computed based on color dissimilarity and georoetriviews. The computational cost of the algorithm is very high,
relationship with the pixel under consideration. The advantaking about one minute to generate a disparity map [4].
tage of the adaptive-weight approach is that it can preserve Real time adaptive-weight in [3} To achieve real time

arbitrarily shaped depth discontinuities using a fixed wind
size [4]. The adaptive weight of pixelin the support window
of pixel p is computed as following :

w(p,q) = k- fs(Acpq) - fp(Agpg) (1)
Acpg = \/(Lp = Lg)? + (ap —ag)? + (b, —bg)* (2)
Agpq = \/(xp —xg)? + (yp —¥9)?) (3)

Fo(Bpg) = exp—220) . (Ag,.) = exp— 200y ()
Ye fyP

Ac,, measures color similarity of two pixels, anly,,,

implementation on GPU, two simplifications are proposed in
[3]. First, only weights in the reference view is used in cost
aggregation. Second, instead of using a fixed window of size
N x N, [3] use a two pass approach - first pass aggregates
cost along horizontal scanline, followed by a pass aggregat
ing cost along vertical scanline. This reduces the aritiomet
complexity fromO(N?) to O(N). Though the accuracy of
the simplified adaptive-weight in [3] is not so good as in [4],
it already tops the accuracy among all local approaches dis-
cussed in [3]. It's slower than some other local methods in
[3], taking about 64 ms to process Teddy and Cones dataset.
Proposed ESAWIt takesO(N) computations to aggre-

measures Euclidean distance of two pixels. The more similgfate costs of all pixels withidv/2 offset to the center pixel

in color, the closer in distance, the higher the assignedhtei
The aggregated cost of pixeht disparity levell is computed
using:

>_qen, w(p, q)w(pa, 7a)Co(q, d)

C(p,d) = quNp w(p, ¢)w(Pd, qq)

()

Pq andgy are corresponding pixels gfandgq in the tar-
get image at assumed disparity lewelCy (¢, d) is the initial

along 1-D scanline in [3]. Fig 1(a) shows a simple example of
aggregating pixels within range (-13,13). Using the apphoa
in [3] needs computation on 27 pixels. Fig 1(b) shows an-
other way of aggregating cost in 3 iterations with much less
computation. In each iteration, every pixel aggregate$scos
of three pixels, itself and pixels atos and+os offset. The
“impact range” is defined as the furthest pixel offset where
the pixel matching cost is aggregated into the center pixel.
os = 1, 3,9 for three iterations. After each iteration, the im-

pact range grows, from (-1,1) to (-4,4) to(-13,13). In thasw
propagating matching cost within 13 pixels’ offset to thace
ter pixel just need computation 8nx 3 = 9 pixels.

Putting the toy example more formally, if at iteratigrihe
impact range of previous iteration(isr(t — 1), 7(t — 1)), the
maximum step size at iteratianto avoid “holes” in aggre-

gation (missing costs of some pixels in the impact range) i
s(t) = 2r(t—1)+1. And with this step size, the impact range

can be enlarged to-r(¢), (t)), wherer(t) = 3r(t — 1) + 1.
It can be derived that starting froni0) = 0, the maximum
step size at iteratiohshould bes(¢) = 3¢~ 1, the impact range
after iterationt is (—r(t),r(t)), wherer(t) = (3t — 1)/2.

Therefore by propagation using exponential step size,eaggr

gating cost of N pixels need onlyO(logN) computations.

Generalizing the above idea, we design the exponential ste

adaptive weight (ESAW) cost aggregation scheme:

for t = 1 :max.iteration
1. Compute offset:

08 = rounc{basetfl); (6)

2. Aggregate cost horizontallyof center pixep at (x,y), p; at
(z — 0s,y) andp, at (z + os,y):

c"p)= > wgp)C"“ ())

q€{p,p,pr}

—~-iter 3 2 iter4 iter5 < iter 6 —~—iter7 & iter8 iter9 —<-iter 10
—~ 20 —~ 20
X X
©0 @
o 15| » o 15
X N X
o aa, a
g Sg AANA NN A AL g
2 10 oo 58888888688 o 10 Wfﬂ
o o
> >
© ©
5 5
1.5 2.0 25 3.0 15 2.0 25 3.0
base base
(a)
‘ ©-tsukuba —#-venus O teddy X cones‘
@ 60
£
s G
o __ 40 % b
S 9 i
2 £ 3 . = e
8 =~ ® ‘/7’/7’/,‘7707
° 10 o> o —o—20
o
2 - -
0 2 4 6 8 10 12
iteration
(b)

Fig. 2. Accuracy and speed for varying base and iterations.

Table 2. Optimal base for varying number of iterations.

of iterations 3 4 5 6 7 8 9 10

Optimal base 3 2.8 22 22 1.9 1.9 1.9 1.8

Avg. % bad pixels | 13.24 | 11.12| 10.48 | 10.22 | 10.04 9.92 98| 9.83

Avg. MDS 309.6 | 266.2| 219.2 | 191.2| 170.1 | 153.3 | 140.5| 127.7

3. Aggregate cost verticallyof center pixelp at (z,y), p. at
(z,y — 0s) andpq at (x,y + o0s):

c'p)= Y,

q€{pu,p,paq}

w(q, p)C"(q); (8) grammable processing units organized into 16 stream mul-
tiprocessors(SM). Each SM includes 8 stream processors
executing SPMD (single program multiple data) program in

lockstep. The architecture of GPU makes it appropriate for
many image processing applications where a large number of

pixels undergo similar computations independently.

Fig 2(a) shows average percent of bad pixels (the same as In our application, proper memory management is cru-
the last column “Average percent of bad pixels” in Middle- cial to high efficiency in hardware utilization. On G80, off-
bury stereo evaluation online system [2]) of all four bench-chip global and texture memory can be used to store large
mark datasets, for varying number of iterations (3 to 10)anghunks of data. The aggregated cost of each iteration needs
base (1.5 to 3). It's clear that increasing the number o&iter t0 be stored in the off-chip memory. The advantage of texture
tions helps improving the overall accuracy, though improvememory is that it supports clamp addressing mode, i.e., when
ment gets very marginal after iteration 6. The processingoordinates go beyond the image size, texture reference aut
time of ESAW is proportional to the number of iterations, Matically clamps the address. Using global memory, on the
which is plotted in Fig 2(b). Since images in different datas Other hand, needs to deal with out-of-boundary addres=in th
are of different sizes and disparity levels, usually MDSI¢Mi code explicitly. The downside of texture memory is that it's
lions of Disparity per Second) is used as a normalized me&nly readable to the GPU device. Writing to texture memory

surement of computational efficacy. MDS is computed a§1V0|VeS either interacting with host CPU which is very ex-

(image;iéizs(giiﬁgzrr%levelso_ Table 2 summarizes the base giving PENSIVe, Or using memory copy instruction on GPU device.

the best accuracy for each iteration number, and corresponfiowever, tested memory copy time for the aggregated cost
ing accuracy and MDS. after each iteration takes about 7ms, while computing time

takes less than 5ms. Choosing global memory to store the
aggregated costs results in about 2.3x speed up.

Another important issue is the access pattern to global
The GPU we used for this study is NVIDIA GeForce 8800GTXnemory . Accessing off-chip memory involves long latency,
(abbreviated as G80). The G80 contains a total of 128 prahus must be compensated by high throughput. On G80, coa-

noteC* (p) is the aggregated cost of pixglafter iterationt. C"(p) is
the intermediate horizontally aggregated cost.
end

2.2. GPU acceleration

Table 3. Accuracy-speed comparison of real time or near real tier@st(error rate is measured by percentage of error pixels).

tsukuba venus teddy cones Err MDS
vis | all disc | vis | all disc | vis all disc | vis | all disc
GPU | local ESAW(iter5) | 1.8 | 3.3 | 8.7 2940|200 10.1| 169 | 21.2| 6.8 | 14.3 | 159 | 10.5| 219.2
ESAW(iter9) | 2.0 | 2.8 | 9.9 25| 35| 157 | 100| 165| 21.3| 6.0 | 13.0| 144 | 9.8 140.5
AW[3] 23] 3611236] 46 198 109] 188 232 | 59| 143 | 13.8] 11.0 | 104.1
semi-global | DPI[5] 21| 42|106|19|30| 203 72 144 | 176 | 6.4 | 13.7 | 16.5| 9.8 52.8
global BP[6] 15]1 3479 0819 9.0 8.7 132|172 46| 116 | 124] 7.7 19.7

[CPU | local aggregate[7] [3.0 [44 [13235 46 255] 107] 175] 23.4[49[127] 11.3] 11.2] 189 |
AW is abbreviation for “adaptive weight”; DP is abbreviatifor “dynamic programming”; BP is abbreviation for “belipfopagation”.

lesced memory access is the most efficient way to read/write | ¢ 11x11 square window 11x11 shiftable window & 25x3 oriented window
global memory. Coalesced access means 16 threads iSSUE <& 156x15 adaptive window X 21x21 boundary guided 33x33 adaptive weight
in the same instruction cycle must access continuous asldres 141 =

and starting address must be aligned (multiples of 16).e5Sinc £ ;; |
the offset value in each iteration may not guarantee to be 11 ¢ 4 o
multiples of 16, this may result violating the starting askl 61

alignment requirement. The solution is to use on-chip share 5 ¢ .ters terd r f .\-\.\
memory. Chunks of pixels are read from global memory into 5 : 1erS itore_iter7 _ters_terd : :
the on-chip shared memory in a coalesced way, further com- © 2 4 6 8 10 12 14 16

putation only involves accessing shared memory, whose ac- <v o .

25 4
cess does not require alignmentand is as fast as registéss. T ¢ fg: A o
technique results in about 4.2x speedup. Using both tech-3 ters. 4/.? = “\"\" _
niques, the total speed up is about 10.5x. All experimental & E S S et e

results reported in the following use both techniques. 0 2 4 6 e 0 2 w6
processing time per disparity evaluation (ns)

err at nonoct

ISC

3. EXPERIMENTAL RESULTS
Fig. 3. Comparison of ESAW with real time local approaches

We compare the ESAW with all real time local approaChQSn [3] at non-occluded and discontinuous area.
in [3]. Fig 3 plots different approaches in the accuracyespe
space. For fair comparison, we use the same measurements as
in [3]:x-axis is the average processing time per dispasigl-e speed space compared to the state-of-art real time or redar re
uation on four datasets. y-axis in Fig 3(a) is the averag err ime approaches.
rate at non-occluded area, in Fig 3(b) is the average enter ra
at discontinuous area. Clearly the ESAW is Pareto-optimal 5. REFERENCES
among all local approaches in the accuracy-speed space. [Il] D. Scharstein and R. Szeliski, “A taxonomy and evaluatid
. Table 3 shows E_SAW compared to the s_tate-of—art real " gense two-frame stereo correspondence algorithmsJJaw,
time or near real time stereo approaches, including local, g2
semi-global and global approaches on GPU and CPU. T
semi-global algorithm [5] is slower than local approaches,
and global algorithm [6] is slower than the semi-global one 3]
but the accuracy of the global algorithm is the best. ESAV\}
can achieve comparable accuracy of adaptive-weight [3] at
iteration 5 and accuracy of semi-global one [5] at iterafion
with 2.1x and 2.7x speed up. CPU based real time stereo |
is far lagged behind in both accuracy and speed.

1 “Middlebury stereo evaluation online system,”
http://vision.mddl ebury. edu/ stereo/eval /.

Minglun Gong, Ruigang Yang, Liang Wang, and Mingwei
Gong, “A performance study on different cost aggregation ap
proaches used in real-time stereo matchingJ@V, 2007.

_;4] K. J. Yoon and I. S. Kweon, “Locally adaptive support-glei
] approach for visual correspondence searchCWPR, 2005.
[5] Liang Wang, Miao Liao, Minglun Gong, Ruigang Yang, and
David Nistr, “High-quality real-time stereo using adaptieost
4., CONCLUSION aggregation and dynamic programming,”3DPTV, 2006.
.) [6] Qingxiong Yang, Liang Wang, Ruigang Yang, Shengnan Wang
In this paper, we propose a novel fast cost aggregation ap- Miao Liao, and David Nistr, “Real-time global stereo mathi
proach ESAW based on exponential step information prop- using hierarchical belief propagation,” BMVC, 2006.
agation . The basic idea is to propagate information fronjz} F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda
long distance pixels to the center pixel within a few iteyas. “Near real-time stereo based on effective cost aggregation
Experiments show ESAW is Pareto optimal in the accuracy- ICPR, 2008.

