
REAL TIME STEREO VISION USING EXPONENTIAL STEP COST AGGREGA TION ON
GPU

Wei Yu1, Tsuhan Chen2, James C. Hoe1

1Carnegie Mellon University,2 School of Electrical Computer and Engineering, Cornell University

ABSTRACT

In this paper, we propose a local cost aggregation approach
for real time stereo vision on a graphics processing unit
(GPU). Recent research shows that local approaches based
on carefully designed cost aggregation strategies can out-
perform many global approaches. Among those local ag-
gregation approaches, adaptive-weight window produces the
best quality disparity map under real-time constraint, butit is
slower than other local approaches. We propose a very fast
adaptive-weight aggregation method based on exponential
step information propagation. The basic idea is to propagate
information from long distance pixels within a few iterations.
We also discuss important techniques of efficient implemen-
tation on GPU platform, which result in 10.5x speed up than
a straightforward implementation. Compared to existing
real time adaptive-weight approach, our technique reduces
the computation time by more than half at improved accu-
racy. Detailed experimental results show that our technique
is Pareto-optimal among existing real time or near real time
stereo algorithms in the accuracy-speed trade-off space.

Index Terms— real time stereo, GPU, adaptive-weight

1. INTRODUCTION

The goal of stereo vision is to reconstruct disparity map from
a stereo image pair. A taxonomy and evaluation system pro-
posed by [1] is now widely used in evaluating the disparity
accuracy of stereo matching algorithms using a set of bench-
mark datasets. As [1] suggests, most stereo algorithms con-
sists of four steps: (1) cost initialization (matching costof
each pixel at different disparity hypothesis) (2) cost aggrega-
tion (aggregate initial costs over spatial support) (3) disparity
optimization (decide the disparity level that optimizes a tar-
get cost function) (4) disparity refinement (post-processing to
remove mismatch).

Most existing stereo algorithms can be classified into two
categories: local and global approaches. Their major differ-
ences lie in step (3). Local algorithms use Winner-Take-All
(WTA) strategy, simply taking the disparity level that mini-
mizes the aggregation cost. Global algorithms optimize more
complicated target functions that consider interactions among
pixels, and thus need global optimization techniques like be-

lief propagation or graph cut to compute the optimal solution.
Generally speaking, local algorithms are computationallyless
expensive, and global algorithms produce higher quality dis-
parity map. The top performing stereo algorithms in terms
of accuracy are all global methods [2]. However, those algo-
rithms typically take several to tens of minutes to compute a
disparity map of image size 288×384 with 16 dispairty levels,
which are not suitable for real-time applications.

Most real time stereo systems use local approaches on
graphics processing unit (GPU). [3] presents interesting
accuracy-speed trade-off of six recent cost aggregation ap-
proaches with WTA optimization under the real time con-
straint on an ATI Radeon X800 graphics card. Their experi-
ments show that a modified version of adaptive-weight win-
dow approach proposed in [4] performs the best in terms of
accuracy, but it’s relatively slower than other local methods.
The adaptive-weight approach proposed in [4] demonstrates
high accuracy, but it’s too expensive in computation to run in
real time. [3] simplifies the method in [4] for a better trade-off
between accuracy and speed.

There are several papers about real time stereo using
semi-global or global approaches on GPU. [5] proposes
a semi-global real time stereo algorithm on ATIs Radeon
XL1800 graphics card. It integrated adaptive-weight aggre-
gation along vertical direction with dynamic programming
optimization along horizontal scanlines. The disparity accu-
racy is slightly better than to [3] , and the computation time
is about 2x of [3]. [6] proposes a near real time global stereo
matching using hierarchical belief propagation. Better dis-
parity accuracy is achieved compared to [5], and computation
time is about 2.7x of [5].

[7] proposes a segmentation-based cost aggregation strat-
egy that can achieve near real time processing speed on Intel
Core Duo 2.14 GHz CPU, with the best accuracy among the
state-of-art near real time local approaches on CPU. How-
ever, both accuracy and speed in [7] are worse compared to
any of the above real time stereo on GPU platforms, showing
a certain gap between CPU/GPU processing power for stereo
vision.

Table 1 summarize all exisitng real time or near real time
stereo. We are inspired by the real time adaptive-weight ap-
proach in [3]. The adaptive width window approach exhibits
high data parallelism, which is very suitable to be accelerated



Table 1. Summarize real time or near real time stereo (quan-
titative results are given later in Table 3)

GPU local[3] very fast, good accuracy
semi-global[5] slower and better accuracy than local
global[6] slower and better accuracy than semi-global
local(proposed) faster than[3, 5] at comparable accuracy

CPU local[7] slower and worse accuracy than any GPU method

on GPU. Though graphics hardware has many more process-
ing units than general purpose computing hardware, writing
fast code to maximize the GPU hardware utilization is not
trivial. Our goal is to improve the Pareto efficiency of GPU
based real time stereo. That is, to achieve the same accuracy
with less computing time, or higher accuracy with the same
computing time.

In the following, section 2 explains the proposed algo-
rithm and GPU implementation techniques. Section 3 com-
pares our technique with existing real time or near real time
approaches in terms of both accuracy and speed. Section 4
concludes the paper.

2. PROPOSED ALGORITHM AND GPU
ACCELARATION

2.1. Algorithm Description

Original adaptive-weight in [4] . The basic idea of the
adaptive-weight approach is to adjust the support-weight of
each pixel in a given support window. The weight of each
pixel is computed based on color dissimilarity and geometric
relationship with the pixel under consideration. The advan-
tage of the adaptive-weight approach is that it can preserve
arbitrarily shaped depth discontinuities using a fixed window
size [4]. The adaptive weight of pixelq in the support window
of pixel p is computed as following :

w(p, q) = k · fs(∆cpq) · fp(∆gpq) (1)

∆cpq =
√

(Lp − Lq)2 + (ap − aq)2 + (bp − bq)2 (2)

∆gpq =
√

(xp − xq)2 + (yp − yq)2) (3)

fs(∆cpq) = exp(−
∆cpq

γc

), fp(∆gpq) = exp(−
∆gpq

γp

) (4)

∆cpq measures color similarity of two pixels, and∆gpq

measures Euclidean distance of two pixels. The more similar
in color, the closer in distance, the higher the assigned weight.
The aggregated cost of pixelp at disparity leveld is computed
using:

C(p, d) =

∑

q∈Np
w(p, q)w(pd, qd)C0(q, d)

∑

q∈Np
w(p, q)w(pd, qd)

(5)

pd andqd are corresponding pixels ofp andq in the tar-
get image at assumed disparity leveld. C0(q, d) is the initial

Iteration 1, step size =1, impact range (-1,1)

Iteration 2, step size =3, impact range (-4,4)

Iteration 3, step size =9, impact range (-13,13)

impact range (-13,13)

-13 0 13

10-1

-4 0 4

0 13-13

Impact range from 

previous iteration

(a)

(b)

Impact range from 

previous iteration

Fig. 1. A simple example of cost aggregation: (a) aggregation
used in [3] (b) exponential step information propagation

matching cost of pixelq at assumed disparity leveld. Ac-
cording to [4], considering weights in both reference and tar-
get images can help preserving depth discontinuities in both
views. The computational cost of the algorithm is very high,
taking about one minute to generate a disparity map [4].

Real time adaptive-weight in [3]. To achieve real time
implementation on GPU, two simplifications are proposed in
[3]. First, only weights in the reference view is used in cost
aggregation. Second, instead of using a fixed window of size
N × N , [3] use a two pass approach - first pass aggregates
cost along horizontal scanline, followed by a pass aggregat-
ing cost along vertical scanline. This reduces the arithmetic
complexity fromO(N2) to O(N). Though the accuracy of
the simplified adaptive-weight in [3] is not so good as in [4],
it already tops the accuracy among all local approaches dis-
cussed in [3]. It’s slower than some other local methods in
[3], taking about 64 ms to process Teddy and Cones dataset.

Proposed ESAWIt takesO(N) computations to aggre-
gate costs of all pixels withinN/2 offset to the center pixel
along 1-D scanline in [3]. Fig 1(a) shows a simple example of
aggregating pixels within range (-13,13). Using the approach
in [3] needs computation on 27 pixels. Fig 1(b) shows an-
other way of aggregating cost in 3 iterations with much less
computation. In each iteration, every pixel aggregates costs
of three pixels, itself and pixels at−os and+os offset. The
“impact range” is defined as the furthest pixel offset where
the pixel matching cost is aggregated into the center pixel.
os = 1, 3, 9 for three iterations. After each iteration, the im-



pact range grows, from (-1,1) to (-4,4) to(-13,13). In this way,
propagating matching cost within 13 pixels’ offset to the cen-
ter pixel just need computation on3 × 3 = 9 pixels.

Putting the toy example more formally, if at iterationt, the
impact range of previous iteration is(−r(t−1), r(t−1)), the
maximum step size at iterationt to avoid “holes” in aggre-
gation (missing costs of some pixels in the impact range) is
s(t) = 2r(t−1)+1. And with this step size, the impact range
can be enlarged to(−r(t), r(t)), wherer(t) = 3r(t− 1) + 1.
It can be derived that starting fromr(0) = 0 , the maximum
step size at iterationt should bes(t) = 3t−1, the impact range
after iterationt is (−r(t), r(t)), wherer(t) = (3t

− 1)/2.
Therefore by propagation using exponential step size, aggre-
gating cost ofN pixels need onlyO(logN) computations.
Generalizing the above idea, we design the exponential step
adaptive weight (ESAW) cost aggregation scheme:

for t = 1 :max iteration
1. Compute offset:

os = round(base
t−1); (6)

2. Aggregate cost horizontallyof center pixelp at (x, y), pl at
(x − os, y) andpr at (x + os, y):

C
h(p) =

∑

q∈{pl,p,pr}

w(q, p)C(t−1)(q); (7)

3. Aggregate cost verticallyof center pixelp at (x, y), pu at
(x, y − os) andpd at (x, y + os):

C
t(p) =

∑

q∈{pu,p,pd}

w(q, p)Ch(q); (8)

note:Ct(p) is the aggregated cost of pixelp after iterationt. Ch(p) is
the intermediate horizontally aggregated cost.
end

Fig 2(a) shows average percent of bad pixels (the same as
the last column “Average percent of bad pixels” in Middle-
bury stereo evaluation online system [2]) of all four bench-
mark datasets, for varying number of iterations (3 to 10)and
base (1.5 to 3). It’s clear that increasing the number of itera-
tions helps improving the overall accuracy, though improve-
ment gets very marginal after iteration 6. The processing
time of ESAW is proportional to the number of iterations,
which is plotted in Fig 2(b). Since images in different datasets
are of different sizes and disparity levels, usually MDS (Mil-
lions of Disparity per Second) is used as a normalized mea-
surement of computational efficacy. MDS is computed as
(image size)×(disparity levels)

processing time . Table 2 summarizes the base giving
the best accuracy for each iteration number, and correspond-
ing accuracy and MDS.

2.2. GPU acceleration

The GPU we used for this study is NVIDIA GeForce 8800GTX
(abbreviated as G80). The G80 contains a total of 128 pro-

iter 7 iter8 iter9 iter 10iter 3 iter4 iter5 iter 6

a
v
g
. 
b
a
d
 p

ix
e
ls

 (
%

)

base
base

0

10

20

30

40

50

60

0 2 4 6 8 10 12

iteration

p
ro

c
e
s
s
in

g
 t

im
e
 

(m
s
)

tsukuba venus teddy cones

a
v
g
. 
b
a
d
 p

ix
e
ls

 (
%

)

base base

(a)

(b)

20

15

10

5 5

10

15

20

1.5 2.0 2.5 3.0
base

1.5 2.0 2.5 3.0

Fig. 2. Accuracy and speed for varying base and iterations.

Table 2. Optimal base for varying number of iterations.

127.7140.5153.3170.1191.2219.2256.2309.6Avg. MDS

9.839.89.9210.0410.2210.4811.1213.24Avg. % bad pixels

1.81.91.91.92.22.22.83Optimal base

109876543# of iterations

grammable processing units organized into 16 stream mul-
tiprocessors(SM). Each SM includes 8 stream processors
executing SPMD (single program multiple data) program in
lockstep. The architecture of GPU makes it appropriate for
many image processing applications where a large number of
pixels undergo similar computations independently.

In our application, proper memory management is cru-
cial to high efficiency in hardware utilization. On G80, off-
chip global and texture memory can be used to store large
chunks of data. The aggregated cost of each iteration needs
to be stored in the off-chip memory. The advantage of texture
memory is that it supports clamp addressing mode, i.e., when
coordinates go beyond the image size, texture reference auto-
matically clamps the address. Using global memory, on the
other hand, needs to deal with out-of-boundary address in the
code explicitly. The downside of texture memory is that it’s
only readable to the GPU device. Writing to texture memory
involves either interacting with host CPU which is very ex-
pensive, or using memory copy instruction on GPU device.
However, tested memory copy time for the aggregated cost
after each iteration takes about 7ms, while computing time
takes less than 5ms. Choosing global memory to store the
aggregated costs results in about 2.3x speed up.

Another important issue is the access pattern to global
memory . Accessing off-chip memory involves long latency,
thus must be compensated by high throughput. On G80, coa-



Table 3. Accuracy-speed comparison of real time or near real time stereo (error rate is measured by percentage of error pixels).
tsukuba venus teddy cones Err MDS

vis all disc vis all disc vis all disc vis all disc
GPU local ESAW(iter 5) 1.8 3.3 8.7 2.9 4.0 20.0 10.1 16.9 21.2 6.8 14.3 15.9 10.5 219.2

ESAW(iter 9) 2.0 2.8 9.9 2.5 3.5 15.7 10.0 16.5 21.3 6.0 13.0 14.4 9.8 140.5
AW[3] 2.3 3.6 11.2 3.6 4.6 19.8 10.9 18.8 23.2 5.9 14.3 13.8 11.0 104.1

semi-global DP[5] 2.1 4.2 10.6 1.9 3.0 20.3 7.2 14.4 17.6 6.4 13.7 16.5 9.8 52.8
global BP[6] 1.5 3.4 7.9 0.8 1.9 9.0 8.7 13.2 17.2 4.6 11.6 12.4 7.7 19.7

CPU local aggregate[7] 3.0 4.4 13.2 3.5 4.6 25.5 10.7 17.5 23.4 4.9 12.7 11.3 11.2 18.9
AW is abbreviation for “adaptive weight”; DP is abbreviation for “dynamic programming”; BP is abbreviation for “beliefpropagation”.

lesced memory access is the most efficient way to read/write
global memory. Coalesced access means 16 threads issued
in the same instruction cycle must access continuous address
and starting address must be aligned (multiples of 16). Since
the offset value in each iteration may not guarantee to be
multiples of 16, this may result violating the starting address
alignment requirement. The solution is to use on-chip shared
memory. Chunks of pixels are read from global memory into
the on-chip shared memory in a coalesced way, further com-
putation only involves accessing shared memory, whose ac-
cess does not require alignment and is as fast as registers. This
technique results in about 4.2x speedup. Using both tech-
niques, the total speed up is about 10.5x. All experimental
results reported in the following use both techniques.

3. EXPERIMENTAL RESULTS

We compare the ESAW with all real time local approaches
in [3]. Fig 3 plots different approaches in the accuracy-speed
space. For fair comparison, we use the same measurements as
in [3]:x-axis is the average processing time per disparity eval-
uation on four datasets. y-axis in Fig 3(a) is the average error
rate at non-occluded area, in Fig 3(b) is the average error rate
at discontinuous area. Clearly the ESAW is Pareto-optimal
among all local approaches in the accuracy-speed space.

Table 3 shows ESAW compared to the state-of-art real
time or near real time stereo approaches, including local,
semi-global and global approaches on GPU and CPU. The
semi-global algorithm [5] is slower than local approaches,
and global algorithm [6] is slower than the semi-global one,
but the accuracy of the global algorithm is the best. ESAW
can achieve comparable accuracy of adaptive-weight [3] at
iteration 5 and accuracy of semi-global one [5] at iteration9,
with 2.1x and 2.7x speed up. CPU based real time stereo [7]
is far lagged behind in both accuracy and speed.

4. CONCLUSION

In this paper, we propose a novel fast cost aggregation ap-
proach ESAW based on exponential step information prop-
agation . The basic idea is to propagate information from
long distance pixels to the center pixel within a few iterations.
Experiments show ESAW is Pareto optimal in the accuracy-

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16

11x11 square window 11x11 shiftable window 25x3 oriented window

15x15 adaptive window 21x21 boundary guided 33x33 adaptive weight

ESAW

processing time per disparity evaluation (ns)
e
rr

 a
t 
d
is

c
. 
a
re

a
e
rr

 a
t 
n
o
n
o
c
c
. 
a
re

a

iter3

iter4 iter5 iter6 iter7 Iter8 Iter9

iter3
iter4

iter5
iter6 iter7 Iter8 Iter9

Fig. 3. Comparison of ESAW with real time local approaches
in [3] at non-occluded and discontinuous area.

speed space compared to the state-of-art real time or near real
time approaches.

5. REFERENCES

[1] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms,” inIJCV,
2002.

[2] “Middlebury stereo evaluation online system,”
http://vision.middlebury.edu/stereo/eval/.

[3] Minglun Gong, Ruigang Yang, Liang Wang, and Mingwei
Gong, “A performance study on different cost aggregation ap-
proaches used in real-time stereo matching,” inIJCV, 2007.

[4] K. J. Yoon and I. S. Kweon, “Locally adaptive support-weight
approach for visual correspondence search,” inCVPR, 2005.

[5] Liang Wang, Miao Liao, Minglun Gong, Ruigang Yang, and
David Nistr, “High-quality real-time stereo using adaptive cost
aggregation and dynamic programming,” in3DPTV, 2006.

[6] Qingxiong Yang, Liang Wang, Ruigang Yang, Shengnan Wang,
Miao Liao, and David Nistr, “Real-time global stereo matching
using hierarchical belief propagation,” inBMVC, 2006.

[7] F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda,
“Near real-time stereo based on effective cost aggregation,” in
ICPR, 2008.


