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Abstract

The most popular approach to large scale image re-
trieval is based on the bag-of-visual-word (BoV) represen-
tation of images. The spatial information is usually re-
introduced as a post-processing step to re-rank the retrieved
images, through a spatial verification like RANSAC. Since
the spatial verification techniques are computationally ex-
pensive, they can be applied only to the top images in the
initial ranking. In this paper, we propose an approach that
can encode more spatial information into BoV representa-
tion and that is efficient enough to be applied to large-scale
databases. Other works pursuing the same purpose have
proposed exploring the word co-occurrences in the neigh-
borhood areas. Our approach encodes more spatial in-
formation through the geometry-preserving visual phrases
(GVP). In addition to co-occurrences, the GVP method also
captures the local and long-range spatial layouts of the
words. Our GVP based searching algorithm increases little
memory usage or computational time compared to the BoV
method. Moreover, we show that our approach can also be
integrated to the min-hash method to improve its retrieval
accuracy. The experiment results on Oxford 5K and Flicker
1M dataset show that our approach outperforms the BoV
method even following a RANSAC verification.

1. Introduction
Similar image retrieval has attracted increasing interests

in recent years. Given a query image or region, the goal
is to retrieve the images of the same object or scene from
a large database and return a ranked list. Three important
factors must be considered in a large-scale retrieval system:
retrieval accuracy, memory usage, and efficiency.

Most state of the art retrieval technologies are based
on the bag-of-visual-word (BoV) model initially introduced
by [17], in which images are represented as histograms of
visual words. Image querying is typically accomplished
in two steps: searching and post-processing. During the
searching step, similar images are retrieved from the large
database and an initial ranking is generated. This step must
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Figure 1. The images on the left show the matched visual words of
a query image with two different images, and images on the right
show the matched geometry-preserving visual phrases (GVP).
Each GVP is composed of two words in the same color. With
the visual words, we have more matches for images of different
objects (top image pair) than images of the same object (bottom
image pair). On the contrary, with the GVP, we have much fewer
matches for different objects than the same object. If we use the
number of matches for ranking, the bag of words model will give
incorrect ranking for these two images, while the GVP can gener-
ate correct ranking.

be facilitated with an efficient algorithm in order to deal
with large scale databases. The most popular approach is to
index images with inverted files [17] to facilitate fast access
to the images with common words. The post-processing
step provides a more precise ranking of the retrieved im-
ages, usually through spatial verification [15]. Numerous
works have been proposed and have successfully improved
the retrieval performance and efficiency. The approximate
nearest neighbor [15] and tree vocabulary [13] increase the
efficiency of building a large vocabulary, while soft match-
ing [16] and hamming embedding [7] address the hard
quantization problem of visual words. Spatial verification
methods [15] and query expansion [5] have been proposed
for re-ranking at the post-processing step, and many meth-
ods [9, 22, 8, 14] have been introduced to decrease the mem-
ory usage for the inverted files.

In this paper, we are interested in improving the BoV
model with spatial information. Despite its simplicity and
efficiency, the BoV model discards spatial information,
which is crucial for visual representation because of the
ambiguity of visual words. Spatial information is usually
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re-introduced in the post-processing step through a geome-
try verification, such as RANSAC [15] or neighboring fea-
ture consistency [17]. Since geometry verification meth-
ods are usually computationally expensive, they are applied
only to the top images in the initial ranking. Therefore,
efficient algorithms that encode more spatial information
into the searching step are beneficial. Lin and Brandt [12],
and Lampert [10] rank the images based on the matching
scores of the query image with the localized sub-windows
in images. These methods encode more spatial information
than the the BoV model on the entire image and provide
localizations of the query. However, when the query re-
gion is large, they are used primarily as a post-processing
step because of the memory usage and speed[12]. Spa-
tial Pyramid Matching (SPM)[11] and methods with GIST
features [19] encode rigid spatial information by quantiz-
ing the image space and lack the invariance to transforma-
tions. Spatial-bag-of-features[1] handle variances of SPM
by changing the order of the histograms; the spatial his-
togram of each visual word is rearranged by starting from
the position with the maximum frequency, resulting in im-
provement over both BoV and SPM. However, this rear-
rangement may not correspond to the true transformation.

Another approach is to search using phrases or colloca-
tions generated from visual words. Previous works usually
use the phrases to model the co-occurrences of the words,
either in the entire images or in local neighborhoods. Co-
occurrences in the entire images [18] do not capture spatial
information between the words, while co-occurrences in lo-
cal neighborhoods [21, 25, 20] capture neighboring infor-
mation, but ignore long-range interactions. Moreover, they
ignore the spatial layouts of the words in the neighborhoods
[21, 25] or only perform weak spatial verification[20]. An-
other problem with existing methods [18, 21, 25] is that,
because the total number of phrases can increase exponen-
tially to the number of words in a phrase, they must select
a subset from the entire phrase set. Sophisticated mining or
learning algorithms have been proposed for this selection,
but it may still be risky to discard a large portion of phrases,
some of which may be representative ones for the images.

We use geometry-preserving visual phrases (GVP) to en-
code more spatial information in the searching step. A GVP
is a set of visual words in a particular spatial layout, so
different layouts define different GVP. Our searching algo-
rithm with GVP is inspired by a recent algorithm proposed
by Zhang and Chen [23] for object categorization. They
propose an efficient algorithm which can identify the co-
occurring GVP 1 in time linear to the number of local words
in an image. The algorithm is used to build a kernel of
the SVM for object categorization task, and do not consider
large-scale databases. We extend the algorithm so we can

1In their paper, they use high order features. We use phrases to make
consistency with papers in the image retrieval literature.

perform efficient large-scale image search. Our approach
increases little memory usage or runtime of the traditional
searching method with the BoV model, while providing a
better initial ranking with more spatial information. Figure
1 illustrates the differences of the ranking results using BoV
and GVP.

Moreover, our approach can integrate the geometry-
preserving visual phrases(GVP) into the popular min-hash
method to further improve the efficiency of searching with
GVP, because the min-hash method reduces memory usage
and increases the search efficiency. The traditional min-
hash method [4, 6] is based on the BoV model. Our ap-
proach increases its retrieval accuracy by adding spatial in-
formation without increasing the computational cost. In this
line of work, we are related to [3] and [2]. While they con-
sider local co-occurrences [3] or global co-occurrences [2],
we encode more spatial information.

2. Inverted Files with GVP
2.1. Inverted File Index

We first review the traditional searching scheme with
the inverted file structure. An image Ii is represented
as a vector V (Ii), with one component for each visual
word in the dictionary. The jth component in the vector
vj(Ii) is the weight of the word j: the tf -idf weighting
scheme is usually used. The similarity of two images Ii
and Ii′ is defined as the cosine similarity of the two vec-
tors V (Ii) · V (Ii′)/(‖V (Ii)‖‖V (Ii′‖). Ranking with this
similarity also gives the same result as ranking with the Eu-
clidean distance of the L2-normalized vectors. With a large
vocabulary, this vector representation is very sparse. The
inverted file structure [17] utilizes this sparseness to index
images and enables fast searching. For each visual word
in the vocabulary, this structure stores the list of images in
which the word occurs and its term frequency (tf ).

Searching Scheme: Given a query image q, the search
can be interpreted as a voting scheme [7]: 1) The scores
of all images in the database are initialized to 0. 2) For
each word j in the query, we retrieve the list of images that
contain this word through the inverted files. For each image
i in the list, we increment its score by the weight of this
word score(i)+ = tfij × idfj . After processing all words
in the query, the final score of image i gives the dot product
of the vectors of image i and the query. 3) We normalize
the scores to obtain the cosine similarities for ranking.

2.2. Geometry-Preserving Visual Phrases

A geometry-preserving visual phrase (GVP) of length k
is defined as k visual words in a certain spatial layout. Dif-
ferent words and different spatial layouts both define differ-
ent phrases. To tolerate shape deformation, the image space
is quantized into bins. Figure 2 shows example occurrences
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Figure 2. Illustration of the co-occurrences of the same GVP. Dif-
ferent alphabets (A,B, ...) represent different visual words.

of the same GVP of length 3 in the two images. An image
will be represented as a vector defined with the GVP. Sim-
ilar to the BoV model, the vector representation V k(I) of
an image I is defined as the histogram of GVP of length
k, with the ith component representing the frequency (tf )
of phrase pi. For simplicity of explanation, we first ignore
the idf part of the weighting. This vector can be extremely
long even when k = 2 while a large vocabulary is used.
Therefore, it is impractical to create the vectors directly and
perform the search. However, it can be easily proven that
the dot product of such vectors of two images equals the
total number of co-occurring GVP in these images.

We utilize the algorithm proposed in [23] to identify the
co-occurring GVP in two images. The algorithm is illus-
trated in figure 2. For each pair of the same word j in images
I and I ′, we calculate their offset (4xj ,4yj), which is the
location of the word in image I ′ substracts that in image I .
Then a vote is generated on the offset space at (4xj ,4yj).
On the offset space, k votes locating at the same place cor-
respond to a co-occurring GVP of length k. In the exam-
ple of figure 2, word A,B,C corresponds to a co-occurring
GVP of length 3. Thus, by utilizing the offset space, we
can efficiently count the number of co-occurring GVP. For
example, the number of co-occurring GVP of length 2 in
figure 2 is 1 (for bin with D,F ) + 1 (for bin with B,F ) +(
3
2

)
(3 choose 2, for bin with A,B,C). After obtaining the

dot product, the similarity of the two images is the dot prod-
uct dividing the L2-norms. The L2-norm of an image I can
be calculated by counting the co-occurring GVP with itself,
since ‖V k(I)‖ =

√
V k(I) · V k(I).

2.3. Searching with GVP

The previous section presented the algorithm for calcu-
lating the GVP similarity score of two images. In order
to search a large database with this similarity, we integrate
the algorithm into the inverted file structure. Suppose for
each visual word in the inverted files, other than the images
that contain this word, we have also stored the location in

which the word occurs. Multiple entries are created if a
word occurs multiple times in one image. We discuss about
the storage strategy in the later section.

The key idea is to calculate the number of votes in each
offset bin for all images in the database during the process
of searching. We modify the searching scheme introduced
in Section 2.1. Rather than keeping one bin for each im-
age for accumulating the scores, we keep M bins for each
image, where M is the number of possible offsets. The vot-
ing procedure for obtaining the similarity scores of length
k-GVP is as follows.

1. Initialize M bins for each image in the database to 0.
Each bin represents an offset value.

2. For each word j in the query image, retrieve the im-
age IDs and locations of the occurrences of j through
the inverted files. For each retrieved word occurrence
d in image i, we calculate the offset of d and j and
increment the corresponding offset bin of image i.

Si,xd−xj ,yd−yj+ = 1 (1)

where, (xd, yd) and (xj , yj) are the x and y axis of the
locations (in the quantized image space) of d and j, Si

are the scores for image i.
3. Calculate the number of co-occurring GVP of length k

for each image i by traversing each bin m.

Ŝi =
∑

m>=k

(
Si,m

k

)
(2)

4. Obtain the final score S∗i of each image by normalizing
Ŝi with its L2-norm.

2.4. IDF Weighting for Phrases

We further consider the idf weights of visual words.
The idf value for a word wj is calculated as log(Nj/N),
where Nj is the number of images that contain wj and N
is the total number of images. For the sake of efficiency,
we define the idf weight of a GVP p as the summation
of the idf weights of the words composing it: idf(p) =∑

wj∈p idf(wj)
When the idf weights considered, the dot product of the

vector representations of two images is equal to the summa-
tion of the idf weights of the co-occurring GVP. Suppose an
offset bin of two images has m votes generated from words
w1, ..., wm (for example, the bin with words A,B,C in fig-
ure 2); the summation of the idf weights of GVPs of length
k in this bin can calculated as follows:∑

p∈{w1,...,wm}k
idf(p) =

(
m− 1

k − 1

) m∑
i=1

idf(wi) (3)

To calculate the similarity scores of all images, we mod-
ify the voting procedure in the previous section as follows.
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Figure 3. Inverted file structure and the illustration for updating
the scores of images with this structure. Green numbers are the
offsets of word j and the word occurrences in the database, which
are calculated online using the location of j.

For each image i, other than the number of words Si,m in
each offset bin m, we also keep the summation of the idf
weights of these words Di,m. At step 2, for each word j,
we update both these values:

Si,xd−xj ,yd−yj
+ = 1 (4)

Di,xd−xj ,yd−yj
+ = idf(j) (5)

Equation 2 for calculating the score of image i is changed
to:

Ŝi =
∑

m>=k

Di,m

(
Si,m − 1

k − 1

)
(6)

2.5. Index Structure

We discuss about the storage strategy of the inverted
files. For storing the images that contain a visual word, there
are two standard strategies for the inverted files [15, 7]. The
first one is to keep one entry for each image, and store its
ID and the term frequency of this word in this image. The
second one is to keep one entry for each word occurrence,
and avoid the storage for the term frequencies. With a large
vocabulary, the memory usage is almost equivalent for the
two strategies, since the same word rarely occurs multiple
times in one image [7][3].

To store the locations of the words, one simple way is
to adopt the second strategy and associate each word occur-
rence with the location in which it occurs. Since our algo-
rithm uses only the quantized locations, an alternative stor-
age method is illustrated in figure 3. For each visual word j
and each quantized image location (x, y), we store the list
of images that contain word j at location (x, y). This data
structure only increases the memory by the pointers of the
locations. Supposing we have 1M images with 2 billion fea-
tures and the image space is quantized to 10 by 10 grids, the
first method costs additional 2G bytes of memory to store
the locations, while the second one only increases the mem-
ory by 100M bytes. Another advantage of this structure is

Figure 4. Four example sets of words that have the same offset.
The object in the right image is a 90 degree rotation from the same
object in the left image.

that we do not need to calculate the offsets for each word
occurrences in step 2. The offset can be calculated before
referring to the image lists at a location (x, y) (Figure 3).

2.6. Discussion about Invariance

The GVP presented above only captures the translation
invariance. More invariance, such as scale or rotation in-
variance, can be added by increasing the dimension of the
offset space (Section 2.2) as in paper [24]. The search-
ing algorithms proposed in this paper will remain the same.
However, since adding more dimension increases both the
memory usage and the runtime, we prefer to only encode
translation invariance into the GVP. In figure 4, we show
what will happen when we match two images with a rota-
tion difference. Because of the quantization of the image
space, the algorithm matches the words in local neighbor-
hoods. In this case, our approach degenerates to model the
local histograms as in spatial pyramid matching [11] and
its extension [1]. However, we consider the interactions of
all local histogram pairs in contrast to the exact one-to-one
matching in [11] and [1].

3. Min-hash with GVP
GVP can also be used to improve the retrieval accuracy

of the min-hash method. The min-hash method [4, 6] is
one popular dimension reduction technique that reduces the
memory usage of inverted files and increases the search-
ing efficiency, and is originally designed based on the bag-
of-visual-words model. It is particularly suitable for near-
duplicate image retrieval. We briefly review the min-hash
algorithm based on BoV.

3.1. Min-hash Review

A number of independent random hash functions are
generated. Each hash function fj randomly assigns a real
number to each visual word, and thus defines a permutation
of the words. An image I is represented as a set AI consist-
ing of the words that occur in I . The min-hash value of the
image AI under function fj is defined as the smallest word
inAI : mfj(AI) = argminw∈AI

fj(w). We call thismfj a
min-hash function, which has the property that the probabil-
ity of two sets AI and AI′ having the same min-hash value
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Figure 5. Illustration of the min-hash method with GVP.

is equal to their set overlap. The similarity of two images is
defined as their set overlap.

p(mfj(AI) = mfj(AI′)) =
|AI ∩AI′ |
|AI ∪AI′ |

= sim(AI , AI′)

(7)
If l is the number of times mfj(AI) = mfj(AI′) among
the N min-hash functions we defined, the similarity of im-
ages AI and AI′ can be estimated as l/N .

For efficient retrieval, the min-hashes are grouped into
k-tuples F = (mf1(AI),mf2(AI), ...,mfk(AI)) called
sketches. The probability that two images AI and AI′ has
identical k-tuples is sim(AI , AI′)k. The typical retrieval
procedure estimates the similarity of the query with only
images that have h identical sketches out of S randomly
generated sketches.

3.2. Min-hash with GVP

To integrate the GVP to the min-hash algorithm, we first
force one-to-one mapping from a min-hash function to a
feature (a word occurrence) for each image. A min-hash
function mfj selects the word w in image I , which has the
minimum value under function fj . If the word occurs only
once in the image, we set the function value mfj(I) to this
occurrence. If the word occurs multiple times, we randomly
select one of them and use the selected one as the function
value. In practice, with a large vocabulary, most words has
only one occurrence in the same image (more than 95% re-
ported in [3]).

Thus, k min-hash functions will locate k features,
a length-k-GVP, in an image. The similarity score
simk(I, I ′) of two images I and I ′ is defined as the prob-
ability that the GVP located by a set of k min-hash func-
tions on these images are the same GVP. The calculation
of this similarity is illustrated in figure 5. For each min-
hash function mfj , we locate the corresponding feature
in each image. If the two features are the occurrences of
the same word, that is, the min-hash value of the two im-
ages is the same, we calculate their offset and generate

a vote on the offset space. k votes at the same bin on
the offset space correspond to a co-occurring GVP located
by a set of k min-hash functions. Let ms be the number
of votes in bin s of the offset space and N be the total
number of min-hash functions used; the similarity score
simk(I, I ′) =

∑
s

(
ms

k

)
/
(
N
k

)
. We use this similarity for

ranking.
Collision probability
We look into the defined similarity score simk(I, I ′),

which is also the probability that a GVP collision occurs.
This also equals to the probability that for k min-hash func-
tions, 1) the min-hash values of all functions are the same
for the two images; 2) the located feature pairs generate
votes in the same bin on the offset space. Suppose the two
images have ρ1(I, I ′) number of same word pairs. This also
indicates that if we generate one vote for each same word
pair (gray and red circles in figure 5), we have ρ1(I, I ′) to-
tal number of votes on the offset space. Because of its ran-
domness, when a min-hash function has the same min-hash
values for images I and I ′, it will randomly generate one
vote among the ρ1(I, I ′) votes (red circles). Therefore, let
Ms be the number of votes (gray and red circles) in offset
bin s, and sim(AI , AI′) be the word set overlap defined in
equation 7; the similarity score is:

simk(I, I ′) = sim(AI , AI′)k
∑

sM
k
s

(
∑

sMs)k
(8)

= sim(AI , AI′)k
ρk(I, I ′)

ρ1(I, I ′)k
(9)

where ρk(I, I ′) is the total number of co-occurring GVP of
length k2.

Note that the left part of equation 9 is the probability of a
sketch collision. By using GVP, we further decrease the col-
lision probability. Table 1 gives typical probabilities that a
pair of relevant images has at least one sketch or GVP colli-
sion among S number of sketches or GVP3. Even for length
2, the probability is quite low for at least one GVP colli-
sion among 1024 GVPs. The proposed algorithm works
because with N number of min-hash functions, we have al-
ready considered

(
N
k

)
number of GVP. Therefore, when we

have 512 min-hash functions, we can ensure to have at least
one GVP collision with probability 1.0 for both k = 2 and
k = 3.

4. Experiments
We evaluate our approach based on the three important

factors in image retrieval: retrieval accuracy, memory usage
and searching time.

2The GVP here include the phrases generated using the same word mul-
tiple times

3The probability is calculated as the median of the probabilities of the
relevant image pairs on the University of Kentucky dataset [13] with a
100K vocabulary
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# Images BoV GVP

105K 0.509 0.604

205K 0.479 0.581

505K 0.443 0.554

1M+5K 0.413 0.532

Method Memory
Runtime

Quantization Search

baseline 8.1G
0.89s

0.137s

GVP 8.6G 0.248s

0.4

0.45

0.5

0.55

0.6

0.65

0 200 400 600 800 1000

mAP

Number of  Images

BoV

GVP

method
Probability # of k-tuple needed

k=2 k=3 k=2 k=3
sketch 1.80E-03 7.88E-05 544 12,685
GVP 1.53E-04 3.89E-06 6,529 257,130

method
S=512 S=1024

k=2 k=3 k=2 k=3

sketch 0.61 0.04 0.85 0.08

GVP 0.075 0.002 0.15 0.004

Table 1. The probabilities that at least one sketch or GVP collision
for relevant image pairs among S number of sketches or GVP. k is
length of the sketch or GVP.

Datasets: The experiments are conducted on three
publicly available image retrieval datasets: Oxford 5K
Dataset[15], Flicker 1M dataset[7], and University of Ken-
tucky dataset[13]. Oxford 5K dataset contains 5062 im-
ages with more than 16M features. It also provides 55 test
queries of 11 Oxford landmarks with their ground truth re-
trieval results. Flicker 1M dataset contains 1M images with
more than 2 billion features. This dataset is added as dis-
tractors to the Oxford dataset to test the scalability of our
system. University of Kentucky dataset contains 10,200 im-
ages of 2550 objects where each object has four images.
Using each image to query the database should return the
four images of the same object. To ensure the compatibility
of the experiments, we use the public available descriptors
(SIFT features on hessian affine regions or maximally stable
extremal regions) on the dataset web pages. To create the
vocabulary, we adopt the approximate k-means [15] whose
code is published by the authors.

Baseline: We posit our approach as an efficient algo-
rithm that improves the initial ranking at the searching step.
Therefore, we consider the searching with bag-of-visual-
words (BoV) as our baseline. We also compare favorably
with other works that encode spatial information to BoV at
the searching step. Methods that improve the visual word
quantization or methods performed at the post-processing
step are complimentary to our method.

4.1. Inverted Files with GVP

We evaluate our searching method with the inverted file
structure (method in Section 2) on the Oxford 5K and
Flicker 1M dataset. We use the same experiment settings
as previous papers [15]. The retrieval accuracy is measured
with the mean average precision (mAP) score generated as
follows: the precision-recall curve is created for each query
to calculate the average precision (AP). The mAP is defined
as the mean of the APs of all queries.

Parameter effects: We first examine the effect of the
main parameters in our approach on the Oxford 5K dataset.
All the experiments here are conducted with 1M vocabu-
lary size. Table 2(a) shows the mAP scores of different
lengths of the geometry-preserving phrases phrases (GVP).
We quantize the image space with 10 by 10 steps4. The

4To lessen the problem of hard quantization of the image space, and
we also quantize the offset space by a factor of 2, that is, we merge the
neighboring offset bins. The left sides of Equation 4 and 5 will be changed
to Si,x(xd−xj)/2y,x(yd−yj)/2y and Di,x(xd−xj)/2y,x(yd−yj)/2y

0.6

0.62

0.64

0.66

0.68

0.7

1 2 3 4 5

mAP

Phrase Length

# steps mAP # r. Imgs

2 0.657 3949

5 0.682 3334

10 0.696 2597

15 0.698 1510

20 0.692 1354

method
# of min-hash functions

268 512 640 768 896

BoV 3.17 3.14 3.12 3.07 2.88

GVP 3.26 3.24 3.20 3.14 2.96

2.80

2.90

3.00

3.10

3.20

3.30

200 500 800
# of min-hash fun.

BoV

GVP

Vocab BoV GVP
BoV + GVP  +

RANSAC RANSAC

50K 0.490 0.594 0.599 0.614

100K 0.536 0.607 0.597 0.644

250K 0.598 0.672 0.633 0.688

500K 0.626 0.683 0.642 0.699

1M 0.634 0.696 0.653 0.713

0.450

0.500

0.550

0.600

0.650
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0 200 400 600 800 1000

mAP

Vocabulary Size (K)
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1 2 3 4 5

mAP

Phrase Length

Vocab BoW GVP
BoW + GVP  +

RANSAC RANSAC

50K 0.49 0.594 0.599

100K

250K 0.598 0.672 0.633

500K 0.626 0.683 0.642

1M 0.634 0.696 0.653 0.715

0.45

0.5

0.55

0.6

0.65

0.7

0 200 400 600 800 1000

mAP

Vocabulary Size (K)

BoW

GVP

BoW + RANSAC

# steps mAP # r. Imgs

2 0.657 3949

5 0.682 3334

10 0.696 2597

15 0.698 1510

20 0.692 1354

(a) (b)
Table 2. The effect of parameter changes on Oxford 5K dataset.
(a): mean average precisions with GVP of different lengths.
Length 1 corresponds to the BoV model. (b): the change of mAP
and average number of retrieved images when changing the num-
ber of quantization steps of the image space.

BoV model (length 1) has a mAP score of 0.634, and us-
ing GVP of length 2 improves the mAP score to 0.696. The
searching algorithm with a longer GVP corresponds to a
more rigorous geometry modeling. Length 2 is also the op-
timal length among the lengths from 1 to 5. Since we only
retrieve images with common GVP, a longer GVP may also
leads to a lower recall when the shape deformation of the
relevant images is large. Table 2(b) shows the effect of dif-
ferent number of steps for quantizing the image space. The
same number of steps is used for x and y axis of the image
space. We use GVP of length 2 in these experiments. A
larger number of steps corresponds to a more rigorous spa-
tial modeling. Increasing the number of steps also increases
the memory usage for storing the accumulated scores in the
offset bins. Therefore, we choose to use 10 steps with GVP
of length 2 in our retrieval system.

Comparison: Table 3 compares the retrieval accuracy
(mean average precision) of our approach with the other
methods under different vocabulary sizes on the Oxford 5K
dataset. The results showed that encoding spatial infor-
mation (GVP) to the BoV model (BoV) can significantly
improve the retrieval accuracy. More significant improve-
ment is made on smaller vocabulary sizes, because the vi-
sual words are more ambiguous. Searching with GVP also
performs better than the BoV model plus a RANSAC post-
processing (BoV+RANSAC, for this method, we cite the
results reported in [15]), especially on larger vocabularies.
The reason is that our approach can provide spatial exam-
ination for the whole database, while the RANSAC only
runs on the top images resulted by BoV and thus will be
affected a lot when the precision of the top images is low.
On the smaller dictionary, BoV+RANSAC performs better
than GVP. The reason is that when the visual words are
very ambiguous, the GVP will also be affected, while the
RANSAC is less influenced since it is running on raw fea-
tures. We further apply RANSAC on the top 400 images
ranked with the GVP (GVP+RANSAC), which provides the
best results among these methods. The improvement from
GVP to GVP+RANSAC is resulted from the spatial infor-
mation the GVP failed to capture, such as scale or affine
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Table 3. Comparison of the performances of GVP and BoV with
different vocabulary size for the Oxford 5K dataset.

Figure 6. The precision-recall curve for example queries on the
Oxford 5K dataset. The left one is for query all souls 1, and the
right one is for radcliffe camera 3.

transformation, or the errors in GVP caused by visual word
quantization.

We also compare the proposed GVP with the Spatial
Bag-of-Feature method (SBOF) [1], which also integrate
spatial information into the BoV model. The SBOF uses
the concatenated histogram of the histograms in local bins
and introduces the transformation invariance by reordering
the histogram so that it starts from the bin with maximum
number of words. We encode more spatial information by
considering the interaction between the local bins, and our
method is more robust to invariance since we do not fix one-
to-one matching between bins of two images. They report
0.651 mAP with the SBOF on the 1M vocabulary [1], while
the proposed GVP achieved 0.696 mAP.

Analysis: Figure 6 presents the precision-recall curves
of the BoV model and the proposed GVP for two example
queries. These curves are also typical among the curves for
other queries. Our approach with GVP improve the preci-
sion of the BoV model at lower recalls. Close precision is
shown when the recall reaches a certain point. We found
the reason of this phenomenon is as follows. There are
some relevant images which have few matched visual words
with the queries. For these images, we can neither find co-
occurring GVP with the queries. Therefore, our method
with GVP fails to improve the ranks of these images.

Flicker 1M: We show the retrieval accuracy when
adding the Flicker 1M images in figure 7. The proposed
method with the GVP consistently improve the ranking re-
sults of the BoV model on different number of images. The
GVP outperforms the BoV by 12% on the 1M images.

Computational cost: We run our experiments on a sin-
gle CPU of a 2.26G Quad-Core Intel Xeon server with 12G
memory. The Flicker 1M + Oxford 5K dataset contains
around 2G features and therefore, the size of the inverted

method
Probability # of sketches needed
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Figure 7. The mean average precision of Oxford 5K dataset com-
bined with Flicker 1M images as distractors.
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Probability # of sketches needed

k=2 k=3 k=2 k=3
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0 200 400 600 800 1000

BoV
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# Images BoV GVP

105K 0.509 0.604

205K 0.479 0.581

505K 0.443 0.554

1M+5K 0.413 0.532

Method Memory
Runtime

Quantization Search

BoV 8.1G
0.89s

0.137s

GVP 8.6G 0.248s

Table 4. The memory usage and average runtime per query on the
Flicker 1M dataset.

files is around 8G. Compared with the BoV model, the GVP
method needs additional memory to store the relative point-
ers of the locations as presented in figure 3 and the scores
of offset bins. The additional memory required is around
500M, insignificant comparing to the inverted files. Ta-
ble 4 summarizes the memory usage as well as the running
time. Feature extraction time is not included. The proposed
GVP achieves a significant improvement in retrieval accu-
racy with little speed penalty. In comparison, the RANSAC
spatial verification on top 400 images takes more than 4 sec-
onds per query. The increased runtime (around 0.1 seconds)
is mainly because the scores of the offset bins cannot be
saved to the Cache (8M), and the update of them requires
random access to the memory.

4.2. Min-hash with GVP

We evaluate the proposed min-hash method with the
geometry-preserving visual phrases (GVP) on the Univer-
sity of Kentucky dataset [13] which is also used in the pre-
vious min-hash paper [6]. We use the same experiment set-
ting as in [13, 6]. The retrieval accuracy is measured as the
average number of relevant images in the top four retrieved
images. We choose to integrate the GVP into the min-hash
method with the similarity function using histogram inter-
section [6], since the method with histogram intersection re-
ports the best results in [6]. We use sketches of length 2 in
the same way as the traditional min-hash, and compute sim-
ilarity scores with GVP for images with at least one sketch
collision with the query image. We adopt the same number
of sketches with which the best performance is achieved for
each vocabulary size in [6]. We build a 100K vocabulary
using the same features as [4].

Table 5 presents the average number of relevant images
in the top 4 images for the min-hash method with BoV and
GVP. The results using different number of min-hash func-
tions are presented. By encoding the spatial information us-
ing the proposed GVP, our approach outperforms the min-
hash method with BoV. The improvement is less significant
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Table 5. The number of relevant images in top 4 images on the Uni-
versity of Kentucky dataset for the min-hash methods with BoV
and GVP (length 2).

when fewer min-hash functions are used, because the prob-
ability of a GVP collision is low in this case.

4.3. Discussion

We discuss the limitations of our approach in this sec-
tion. First, like most other image retrieval systems, our
approach is built upon the visual word representation. As
already discussed, if few matched visual words are found
for the relevant images, our algorithm cannot correct them.
This problem may be solved with a query expansion [5] on
raw features in the post-processing step. Second, since we
model the spatial interaction among the visual words, our
current algorithm can not be applied to some dimension re-
duction methods that conduct linear transformations on the
histogram of visual words [9, 22, 8]. However, as we have
shown, as long as the dimension reduction method retains
the word representation as the min-hash method [4], our ap-
proach is still applicable.

5. Conclusion
We proposed an approach that encodes more spatial in-

formation into the bag-of-visual-words (BoV) model at the
searching step of a retrieval system. The spatial information
is encoded with the geometry-preserving visual phrases that
models local and long-range spatial interactions between
the visual words. Our approach can deal with all possible
phrases without a learning step in which a set of phrases
are selected. The experiment results showed that our ap-
proach outperforms the BOV model plus a RANSAC post-
processing while requiring similar memory usage and com-
putational time compared as those of the BoV model.
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