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Abstract

The Conditional Random Field (CRF) is a popular tool
for object-based image segmentation. CRFs used in prac-
tice typically have edges only between adjacent image pix-
els. To represent object relationship statistics beyond adja-
cent pixels, prior work either represents only weak spatial
information using the segmented regions, or encodes only
global object co-occurrences. In this paper, we propose a
unified model that augments the pixel-wise CRFs to cap-
ture object spatial relationships. To this end, we use a fully
connected CRF, which has an edge for each pair of pixels.
The edge potentials are defined to capture the spatial in-
formation and preserve the object boundaries at the same
time. Traditional inference methods, such as belief propa-
gation and graph cuts, are impractical in such a case where
billions of edges are defined. Under only one assumption
that the spatial relationships among different objects only
depend on their relative positions (spatially stationary), we
develop an efficient inference algorithm that converges in
a few seconds on a standard resolution image, where belief
propagation takes more than one hour for a single iteration.

1. Introduction

Object-based image segmentation is one of the most
challenging problems in computer vision. Given an image,
the goal is to label every pixel with a predefined object cat-
egory. A good algorithm for this task should be able to in-
corporate as much context as possible to ensure accurate
object categorization, while providing precise segmentation
along the object contours. Computational efficiency is also
important, especially for high resolution images.

The most popular method is based on the conditional
random fields (CRFs) defined over the image pixels, which
was originally proposed in the TextonBoost work [27]. U-
nary potentials in the CRFs capture the low level cues with
local texture, color, and location [10, 26, 27]. Edge poten-
tials are typically defined for 4 neighbor pixels to smooth
out the prediction. Although this 4-neighbor grid CRF has
shown promising results for object segmentation, it fails to
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Figure 1. Comparison of the object-based image segmentation re-
sults using our methods and previous works. (b) 4-neighbor grid
CRF [27] (c) Robust Pn model plus object co-occurrence statistic-
s [16] (d) Our method with a fully connected CRF, which captures
both long-range color contrasts and the object spatial relationships
in addition to their global co-occurrences. Our method preserves
the object contours without pre-segmentation and is able to place
the face at the right place even if its unary probabilities are small.
The result with our method is obtained in less than 3 seconds.

capture long-range context information.
Many techniques have been proposed incorporating

longer-range information and more contexts by augment-
ing the traditional CRF with additional potentials, including
global image features [31], top-down object detection re-
sults [1,7,17,34,35], label consistency in the same segment-
ed regions [6,9,15,21,23,25], and the global co-occurrence
statistics among object categories [14, 16]. Efficient infer-
ence algorithms have also been associated with the aug-
mented CRFs.

In this paper, we further incorporate the CRFs with pixel-
wise spatial relationships among objects, in addition to their
co-occurrences in the entire image. We model the object
segmentation problem with a fully connected CRF, which
allows every pair of pixels in an image to connect with each
other. Unlike the grid CRFs, where the edges only serve
for the contrast sensitive smoothness, the proposed CRF has
edge potentials that encode both color contrasts and spatial
arrangements of different object categories.

The context of spatial object interactions has been ex-
plored by many previous works on object detection [2,29],
and has been proved of its effectiveness. However, in terms
of object segmentation, encoding this information at pixel
level into the CRFs remains challenging due to the com-
putational cost. Previous methods [6, 21, 31] first segment
the image and then model the object relationships over the
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regions. Working on the regions largely reduces the com-
putational complexity and makes it tractable to capture the
semantic interactions between every pair of regions. How-
ever, the main disadvantage of the segment based methods
is the errors introduced by the initial segmented regions. As
discussed in [10, 15], this may result in dramatic errors in
the final object labeling. Multiple segmentations [25] ease
the problem, but increase the computation and may still
leave some errors. As shown in [10, 14, 15], directly aug-
menting the pixel-wise CRFs usually works better. More-
over, the irregular segmented regions usually capture only
weak geometry, such as the co-occurrence in the entire im-
age [23, 31], four binary relationship indicators (“inside”,
“outside”, “above”, “below”) [6, 14], or locations defined
over the 3 × 3 grid of an image [21]. We are able to cap-
ture more detailed spatial information with the pixels and
preserve object contours at the same time.

A fully connected CRF over image pixels has N2 num-
ber of edges, where N is the number of pixels in an image.
For an image of a resolution of 213 × 320, the number of
edges is more than 5 × 109. The current inference meth-
ods [11, 12, 24, 33, 36] are impractical in such a case. We
propose an efficient inference algorithm for the fully con-
nected CRF, which reduces the complexity at every iteration
to O(N logN). The proposed algorithm relies on one con-
straint on the edge potentials: Given two object categories,
the spatial potentials over two pixels depend only on their
relative positions. That is, we assume that the likelihood
that two categories co-occur at two particular pixels is only
determined with the offset of these pixels. This stationary
assumption is a standard assumption, and was made by al-
most all previous context modeling works [2, 6, 14, 21, 29].
Under this assumption, we show that the gradient of the
Quadratic Programming (QP) relaxation of the fully con-
nected CRF can be efficiently computed with the help of
convolution. QP relaxation was proposed recently in [24]
as another inference method for CRFs and has been proven
to be a tight relaxation and solve exactly the MAP prob-
lem of the original CRFs. With the proposed algorithm, the
QP optimization converges in a few seconds, while max-
product belief propagation and the original QP relaxation
take more than one hour even for a single iteration on the
fully connected CRF.

Efficient inference for fully connected CRFs has also
been explored by a simultaneous and independent work of
Krahenbuhl and Koltun [13]. The main difference is that
they make the Gaussian assumption of the stationary edge
weights and use a Potts model with only label consistency
for similar colors. We relax the assumption to any distri-
bution for the stationary weights. With this more general
assumption, we can encode more general statistics in the
edge weights. For example, we can model the relative spa-
tial relationship (not only ”distances) among different cate-

gories, such as the geometry relationship between cow and
grass. We also provide a different inference algorithm for
this more general problem.

The main contributions are as follows: 1) we present a
unified model that augments the traditional CRFs to capture
the object spatial relationships with fully connected edges.
The proposed CRF also captures the long-range color con-
trast, and therefore preserves the object boundaries with-
out pre-segmenting the image; 2) we propose an efficien-
t inference algorithm for fully connected CRFs with only
one stationary constraint and show that convergence can be
achieved in only a few seconds for a CRF with 5 × 109

edges. Fig. 1 illustrates the benefit of using our method.

1.1. Related Work

Context: Different contexts have been explored by
many previous works in order to improve traditional CRFs.
Global image features [19, 31] add global image informa-
tion by transferring whole image labels to a test image from
similar training images. Label consistency in a segment is
enforced by first segmenting the image and then perform-
ing labeling on the segments [6, 10, 21, 25]. Top-down ob-
ject detection results are added to improve the recognition
performance for structured objects [1, 7, 17, 34, 35]. Ob-
ject relationships have been explored by previous work-
s by modeling weak geometries over segmented region-
s [6, 14, 21, 23, 31]. Torralba et al. [30] captures pixel-wise
relationships for the object detection task, where the goal
is to obtain a rough location without precise object contour
segmentations. We capture the sematic spatial interactions
using the pixels and preserve the object contours at the same
time; thus we have a different and harder inference problem.

Long Range CRFs: Long-range interactions in CRFs
have been explored before. Sparse CRFs [18] add long-
range edges at sparse locations to ensure the computational
tractability. The decision tree field [20] and auto contex-
t [32] learn the edge potentials and determine the edges to
be added based on the learning results. Hierarchical CRF-
s [14] capture long-range interactions with a higher layer,
and therefore may lose detailed information over the pixel-
s. The co-occurrence CRF [16] encodes global object co-
occurrence statistics.

Fast Inference with Convolution: Formulating the o-
riginal problem with convolution to accelerate the compu-
tation has a long history in vision. In particular, Felzen-
szwalb and Huttenlocher [4,5] formulate the message pass-
ing between two nodes in belief propagation as a “min-
convolution”, which reduces the time from O(K2) to
O(K), where K is the number of categories. The assump-
tion they rely on is that the edge costs depend only on the
numerical differences of the labels. Although this assump-
tion works well for tasks like depth estimation, it does not
hold for object segmentation where the categories do not



have any numerical meaning. More importantly, we focus
on inference efficiency over the space domain, which is de-
fined by the number of pixels N , while they are interested
in the number of categories K. For a fully connected graph,
the method still needs to pass N2 number of messages.

2. Approach
We first give a brief description of the traditional 4-

neighbor grid CRFs for object-based segmentation, and
then describe how we augment it with spatial information
and the efficient inference algorithm.

2.1. Grid-CRFs for Object Segmentation

The conditional random fields (CRFs) model the condi-
tional distribution of the class labeling X given an image
I. We use X = {X1, X2, ..., XN} to denote the set of
discrete random variables with Xi ∈ X being associated
with every pixel i ∈ V , and takeing a value from the la-
bel set L = {l1, ..., lK}, which are the object categories.
The labeling X of the image is obtained with a maximum
a posteriori (MAP) estimation of the following conditional
log-likelihood:

logP (X|I) =
∑
i∈V

ψi(xi) +
∑

i∈V,j∈Ni

ψij(xi, xj)− Z(I),

(1)
where Ni is the 4-neighbors of pixel i, and Z is a normal-
ization term that does not depend on X. The unary poten-
tials ψi(xi) are defined with the log likelihood of variable
Xi taking label xi, which are usually computed with the
texture, color, and location features extracted from a local
region around i [10,27]. The edge potential ψij(xi, xj) typ-
ically encodes contrast sensitive smoothness of neighboring
pixels [27].

2.2. Fully Connected CRFs with Stationary Edges

We formulate the labeling problem with a fully connect-
ed CRF defined over the image pixels. The conditional log-
likelihood is the same as the grid CRFs (Equ. 1), except that
the edges are defined over all pairs of pixels. In other words,
the neighborhood of a pixel i is defined with all other pixels
Ni = V . The unary potential is the same as grid CRFs.
The main difference is that the edge potential ψij(xi, xj)
is a combination of the color contrast ϕij(xi, xj) and the
spatial relationships between two categories, φij(xi, xj).

ψij(xi, xj) = φij(xi, xj)︸ ︷︷ ︸
spatial relation

ϕij(xi, xj)︸ ︷︷ ︸
color contrast

. (2)

Color term: The color contrast term ϕij(xi, xj) en-
courages the same label when the colors Ii, Ij are simi-
lar, and different labels otherwise. Let g(Ii − Ij) denote
the gaussian function of the color difference: g(Ii − Ij) =

exp(−θc||Ii − Ij ||2). The color contrast term is defined as
follows.

ϕij(xi, xj) =

{
g(Ii − Ij) if xi = xj

1− g(Ii − Ij) otherwise .
(3)

Spatial term: The spatial term φij(xi, xj) is the log-
likelihood of the spatial distribution f(xi, xj , pi, pj) of
these two categories, i.e. the probability that two categories
xi, xj co-occur at positions pi, pj . We make the assumption
that this probability only depends on the relative positions
of the two pixels pi − pj .

φij(xi, xj) = log(εs + f(xi, xj , pi − pj)) (4)

f(xi, xj , pi − pj) =
1

Z
P (xi, xj)P (pi − pj |xi, xj), (5)

where Z is a normalization term, and f(xi, xj , pi − pj)
is computed as a combination of the global co-occurrence
probability P (xi, xj) and the relative position distribution
given the two categories P (pi − pj |xi, xj). Note that when
xi = xj , the spatial term computes the likelihood that the
same category occurs at a relative position. This likelihood
can capture the shape and size information of the objects.

2.3. Quadratic Programming Relaxation

To obtain a MAP estimation of a CRF model, many in-
ference methods have been proposed. In this paper, we
adopt the quadratic programming (QP) relaxation method
[24], which has been shown to perform comparable to oth-
er inference methods, such as LP relaxation [12] and tree-
reweighted message passing [11].

The labeling problem that maximizes the conditional
probability can be viewed as an integer program by adding
a binary variable µi(xi), which indicates whether a pixel i
is labeled with xi.

µi(xi) =

{
1 if Xi = xi

0 otherwise.
(6)

With µi(xi), the MAP estimation for the conditional prob-
ability P (X|I) (Equ. 1) can be formulated as a quadratic
integer program, which is further relaxed to the following
quadratic program.

max
µ

∑
i;xi

ψi(xi)µi(xi) +
∑

i,j;xi,xj

ψij(xi, xj)µi(xi)µj(xj)

s.t.
∑
i

µi(xi) = 1

0 ≤ µi(xi) ≤ 1

(7)

This QP relaxation has been proven to be a tight relax-
ation, and solves exactly the original MAP problem [24].

Although the optimization problem can also be formu-
lated as a minimization problem of the Gibbs energy, which
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Figure 2. The illustration of the inference algorithm. The top row
shows the initial µi(xi) obtained from the unary terms. The sec-
ond row shows the spatial relationships of different categories with
“Face“ (to save space, we show them in smaller images). The third
row illustrates the messages sent to “Face“ νi(xi, xj) . The bottom
row shows the updated µi(xi) after normalization.

is the negative of the above objective function, the QP re-
laxation is usually formulated with maximization [24]. For
convenience, we make the coefficients in the objective func-
tion positive by adding a constant to the log likelihood
of the unary probability ψi(xi) and the spatial distribution
f(xi, xj , pi − pj) (Equ. 5).

2.4. Iterative Update Procedure

We initialize µwith the unary probabilities, and iterative-
ly update it with the gradient of the objective function. The
gradient of the objective function Q of Equ. 7 is as follows.

qi(xi) =
∂Q

∂µi(xi)
(8)

= ψi(xi) + 2
∑
xj

∑
j

ψij(xi, xj)µj(xj) (9)

= ψi(xi) + 2
∑
xj

νi(xi, xj), (10)

with the symmetric edge potentials ψij(xi, xj).
Given the gradient qi(xi), we can adopt the fixed point

iteration to perform gradient ascent and maintain the con-
straints in (7) at the same time.

µt+1
i (xi) =

µti(xi)qi(xi)∑
xi
µti(xi)qi(xi)

, (11)

where µti(xi) is the value of µi(xi) at the tth iteration.
When the edge potentials do not define a negative defi-

nite matrix, gradient ascent may converge to a local max-
imum, as other iterative update methods, such as max-
product belief propagation or mean field. While we can

follow [24] to change the values on the diagonal of the ma-
trix to make a convex approximation, we found the original
edge potentials produce a reasonable result in practice.

2.5. Gradient as Image Filtering

The main bottleneck for computing the gradient (E-
qu. 10) of a fully connected CRF is the computation for
νi(xi, xj), which is the weighted summation of the mes-
sages from all other pixels to i when the categories are
xi, xj . A naı̈ve implementation would have computation-
al complexity O(N2) for computing this term for all pixels,
where N is the number of pixels. Combining with the edge
potential definitions (Equ. 2, 3, and 5), for two categories
(xi, xj), νi(xi, xj) is calculated as follows. For simplicity,
we omit xi, xj in the variables.

νi =
∑
j

φij(xi, xj)︸ ︷︷ ︸
spatial

ϕij(xi, xj)︸ ︷︷ ︸
color

µj

=

{∑
j φ(pi − pj)g(Ii − Ij)µj if xi = xj∑
j φ(pi − pj) (1− g(Ii − Ij))µj otherwise .

(12)

The intuition of this formulation is that for the same cat-
egory, we prefer propagating the messages to similar color
pixels, while for different categories, we propagate the mes-
sages to pixels of different colors, which are more likely to
come from different objects (illustrated Fig. 2).

Since φ(pi − pj) only depends on the relative position
pi−pj , if we do not have the color term, the above equation
can be solved for all pixels i by treating φ(pi − pj) as a
filter for an image valued with µi(xi). Image filtering can
be greatly accelerated with Fast Fourier Transform (FFT),
which reduces the complexity to O(N logN).

However, if we have the color term, the equation does
not take the form of convolution. Instead, it is a filtering on
the space and color dimension at the same, where the color
filter is a Gaussian. Image filtering on both space and col-
or dimensions has been studied before, as the edge preserv-
ing image smoothing problem, which is also called Bilateral
Filtering [3, 22, 28]. In bilateral filtering, the spatial filter is
also a Gaussian. Although we have a different space term,
we can borrow the idea from the algorithms proposed for
this problem.

Borrowing the idea from [3], if we fix the color value
Ii for the pixel i, Equ. 12 will become a convolution of
the function Hc

j = g(Ic − Ij)µj . Therefore, we discretize
the color values into C clusters {Ic}, and compute a linear
filtering for each Ic.

νci =
∑
jφ(pi − pj)g(Ic − Ij)µj (13)

=
∑
jφ(pi − pj)Hc

j , (14)

when xi = xj . The final output νi is a linear interpolation
between the output νci of two closest values Ic of Ii.



The resulting computation complexity is O(CN logN),
where C is the number of clusters we create for an image.
In practice, we found 10− 15 clusters produce good results
on most images. We also adopt the down-sampling scheme
as described in [3] to further speed up the computation (de-
tailed in the next section). On a 213 × 320 resolution im-
age, computing the gradient (Equ. 10) for all pixels takes
less than 0.1 seconds. Although further acceleration can be
expected with more recent algorithms on the bilateral filter-
ing problem [22], we leave deep exploration on this line for
future work.

The illustration of the iterative update is shown in Fig. 2

2.6. Learning

We perform piecewise training as previous works [10,16,
27], which learn each potentials with ground truth instead
of a joint learning of all potentials at the same time. For the
unary term, we employ the same parameters as [10].

For the edge potential, we need to learn the co-
occurrence distribution P (l, l′) of two categories l, l′ and
their relative spatial distribution P (dpx, dpy|l, l′); we use
(dpx, dpy) to denote the position offset on x, y axes. We
perform a maximum likelihood estimation for these distri-
butions using the training images. The co-occurrence dis-
tribution can be easily obtained by counting the number of
times categories l, l′ appear in the same image. To com-
pute P (dpx, dpy|l, l′), for each image which has objects
l, l′, we count the frequency l and l′ occur at relative po-
sitions (dpx, dpy). This can be efficiently computed with
a cross-correlation over the pixel-wise ground truth for cat-
egories l and l′ (Fig. 3). Note that the order of l and l′

matters. Learning the distributions on 276 images for each
pair of 21 categories takes less than 25 seconds.

To avoid over-fitting, we compute a quantized spatial
distribution. Specifically, rather than computing pixel-wise
P (dpx, dpy|l, l′), we compute a binned relative spatial dis-
tribution with Mx × My bins. In practice, we use step
size 5 for both x and y axes. The quantization also en-
ables us to perform image filtering (previous subsection)
using the down-sampling scheme as [3] with little quality
loss. Specifically, we do filtering on the down-sampled im-
age space, but perform the final interpolation with full-scale
images. Note that this is quite different from performing
inference on a resized input image, which will lose detailed
information. We refer the readers to [3] for the detailed
algorithm. With the down-sampling scheme, the compu-
tational complexity for computing the gradients reduces to
O(CMxMyl log(MxMy)), where C is the number of color
clusters created for an image.

Other model parameters, such as different weights given
to unary and edge potentials, are manually set to minimize
the segmentation errors on a validation set.
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Figure 3. The illustration for computing the frequency that the pixels
labeled with “grass“ and “cow“ appear at different relative position-
s (dpx, dpy). The rightmost image shows the resulting (dpx, dpy)
space, which can be obtained with a cross-correlation from the
ground truth of the two categories.

2.7. Practical Issues

At each iteration, we need to do the image filtering (sec-
tion 2.5) for every pair of categories. We can first compute
the Fourier transform for the scores of all categories to avoid
K2 times of FFT computation, where K is the number of
categories. Moreover, when the co-occurrence probability
of two categories is very low, we do not make propagation
between them. Finally, we pre-compute the Fourier trans-
forms for the edge potentials to avoid recomputing them at
every iteration.

3. Experiments

We perform the experiments on the Sowerby-7 [8] and
MSER-23 [27] datasets. The Sowerby dataset contains 7
object classes of 104 images, and the MSRC dataset has 23
object classes of 591 images. We compare favorably with
the state-of-the-art object segmentation approaches, includ-
ing 4-neighbor grid CRFs [27], robust Pn CRFs [10], and
the robust Pn plus object co-occurrence CRFs [16]. For
implementation of these methods, we use the publicly avail-
able code provided by the authors. We consider our base-
line as different inference methods where the same low
level features are used, and treat other works that encode
additional features, such as features from the whole im-
age [19, 31] or image segments [15], as complementary to
ours.

3.1. Synthetic Data

We first perform an experiment on the synthetic data to
evaluate the proposed inference algorithm. In this experi-
ment, we would like to know how well the proposed fully
connected CRF work when we do not have reliable unary
potentials but know the exact spatial object relationships.
For a selected 213x320 resolution image from the MSRC
dataset, we learn relative spatial distribution between differ-
ent objects using the ground truth of the same image. For
the unary potentials, we randomly generate the class prob-
abilities for each pixel from a uniform distribution over all
categories included in the image.

Analysis: The inference results of the synthetic data are
shown in Fig. 4. No surprisingly, using the 4-neighbor grid
CRF, where no unary and spatial cues are available, we can-
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Figure 5. Average running time (seconds) per iteration for max-
product belief propagation and the proposed method for a CRF de-
fined over 213x320 pixels with edges over different neighborhood
size.

not locate the objects correctly. With relative spatial distri-
bution, we can predict a reasonable layout of the object-
s, but do not preserve good object boundaries when color
contrasts are not included. With color contrast in the edge
potentials, we can provide reliable object segments. The QP
optimization converges after around 20-30 iterations in both
cases. In all the following experiments, we always set the
maximum iteration to 30.

Running time: We compare the running of our method
with max-product loopy belief propagation (BP) in Fig. 5.
We implemented the proposed method using Matlab with
some C++ help on a server with Quad-Core 2.66G Intel X-
eon CPU and 12G memory. We vary the number of neigh-
borhood pixels each node connects to in the CRF. The run-
ning time of BP for each iteration is linear to neighbor-
hood size, while the proposed inference algorithm is al-
most constant. The reason is that the main computation of
the proposed algorithm is a FFT over the image, which is
O(N logN) regardless of the neighborhood size (N is the
total number of pixels in the image). When all pixel pairs
are connected, BP runs out of memory on our computer,
while the estimated running time would be more than one
hour even if enough memory is provided. In comparison,
our algorithm is less than 0.1 second.

3.2. Segmentation without Unary Cues

Now we ask ourselves the question: in real cases, if we
know what objects are present in an image, how well can
we perform object localization and segmentation with only
the relative positions of different categories? That is, we do
not use any classifiers of the low level cues, such as texture
or color, which can be computationally expensive for both
training and testing. Instead, we only learn the relative s-
patial distributions between two categories. We experiment
on the Sowerby dataset [8], where we can safely assume all
images have the same categories: sky, road, vegetable, and
building. We ignore the car and sign categories which are
only present in a few images. We randomly select 50% im-
ages to train the spatial distribution, and use the rest 50%
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Figure 6. Qualitative results on the Sowerby dataset when only
absolute or relative locations are learned during training. From left
to right, we show the test image, grid CRF with random unary po-
tential, grid CRF with learned location potentials, proposed method
with random unary potential, and the ground truth.

Grid+random Grid+loc Pn+loc Ours+random Ours+loc
Global 22.2 68.2 62.1 76.4 78.9

Avg. Recall 24.0 54.5 63.0 67.8 70.8
Avg. Precision 21.8 49.4 61.7 67.7 70.7

Table 1. Quantitative results on the Sowerby dataset when only
absolute or relative locations are learned during training. We show
the pixel-wise global accuracy (%) over all images, and recall (%)
and precision (%) averaged over different categories.

for testing.
Qualitative analysis: Fig. 6 illustrates the predicted

segmentation results of example testing images using differ-
ent methods. We first compare our method with 4-neighbor
grid CRF when randomly generated unary potentials are
used. Since the grid CRF only has neighboring color con-
trast information, the predicted labeling is quite random. To
make fair comparison, we learn absolute location distribu-
tion for different classes and encode it as the unary poten-
tial. With the location information, the grid CRF performs
better, but provides similar prediction for all images. On
the contrary, the proposed fully connected CRF can make
reasonable object arrangements and preserve object bound-
aries for different test images. We can explain our method
as follows: the spatial relationship term in the edge poten-
tials predicts a rough object layout, and the color contrast
term among all pixel pairs enforces a better object segmen-
tation. The bottom row of Fig. 6 shows a typical error made
by our algorithm, when the input image has an usual spatial
layout among objects.

Quantitative comparison: Table 1 presents the pixel-
wise accuracy using different methods. In addition to the
grid CRF, we also compare with the robust Pn CRF [10],
which encourages the label consistency within each seg-
mented region.

3.3. Segmentation with Unary Cues

Finally, we show the experiment results on the MSRC-
23 dataset when more unary information is used. We use
the same experiment settings as [27]: 45% of the images
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Figure 4. Analysis on the synthetic data where no unary cues are used. The rightmost image on the top row shows the relative spatial
distribution of each pair of categories. The middle and bottom rows show the performance of our method with and without color contrast term
in the edge potentials respectively. The leftmost images of these two rows plot the changes of the objective values in the QP relaxation at
each iteration. The rest images show the changes of the predicted labels as we perform iterative updates.

for training, 10% for validation, and the rest 45% for test-
ing. Following [27], we ignore the mountain and horse cat-
egories which have too few training images. For the unary
potentials, we use the same texture, color, and location clas-
sifiers as [10] by applying their published code.

Qualitative analysis: Fig. 7 illustrates the labeling re-
sults of example test images using different CRFs. Grid CR-
F does not capture class relationships, and prefers smoother
object boundaries. Incorporating object co-occurrence s-
tatistics [16] in the Robust Pn CRF [10] provides better ob-
ject boundaries and remove the objects that rarely co-occur
in the same image, eg. cat and book (first row). The pro-
posed CRF incorporates both object co-occurrence informa-
tion and their spatial arrangements, and produce better class
predictions. For example, road is more likely to appear be-
low grass than water (first row); boat has higher possibility
to appear right above water than building (third row); and
car rarely appears right above grass (bottom row). Our ap-
proach benefits from modeling everything in a unified CRF,
and thus is able to make the object layout adjustment only
when the unary potentials are more confused. The second
row in the figure is an example where the color contrast
and spatial relation together leads to a better prediction. S-
ince sky is very likely to appear above grass, and the colors
are quite different for a particular region, we can make the
correct changes. Moreover, with the long-range color con-
trast, we can also provide more precise object boundaries,
eg. bird in the first row, and tree in the bottom row.

Quantitative comparison: Table 2 compares different
CRFs with the recognition rates of different categories. Our
method improves previous works on most of the categories
by 1% to 14%. Note that the ground truth provided by the
MSRC dataset is quite rough, and therefore more precise
object boundaries may not reflect better accuracies. Table
3 presents the global accuracies over all images, and preci-
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Figure 7. Results on the MSRC dataset with different CRFs

sion and recall averaged over different categories. Robust
Pn+co-occurrence [16] performs better than Robust Pn by
incorporating global co-occurrence statistics. By further en-
coding spatial relationships, we improve the RobustPn+co-
occurrence by 1.9% in global accuracy. Since the global ac-
curacy is biased for categories that have more pixels, such
as grass or tree, more improvement is observed for average
precision (3.6%) and recall (2.7%). The proposed method
also runs faster than Robust Pn+co-occurrence. Excluding
the time for obtaining the unary potentials, the proposed
method process an image in 2 to 8 seconds, while robust
Pn+co-occurrence [16] requires 8 to 30 seconds per image.
Gaussian CRF [13] also captures long-range color contrast.
By incorporating spatial interactions among different object
categories, we improve the method by 1.0% in global accu-
racy and 2.4% in average recall.

Errors: Fig. 8 shows example errors made by our
method. When we do not have a good support from the
unary potential, we predict the labels with more common
spatial arrangements, which can be wrong in some cases.



building grass tree cow sheep sky plane water face car bike flower sign bird book chair road cat dog body boat
Unary 68.8 96.5 90.1 82.9 85.0 94.2 87.9 80.4 88.7 77.0 92.5 86.1 62.1 41.5 93.8 66.5 86.3 81.0 53.9 75.0 30.6

Grid-CRF 69.0 96.8 88.6 82.9 85.9 94.6 87.4 81.8 88.2 78.0 92.9 87.0 63.5 41.6 94.1 66.3 86.0 81.3 54.2 75.0 30.2
Robust Pn [10] 70.0 96.8 89.7 83.9 86.9 94.6 87.4 81.8 89.1 78.0 92.7 88.0 62.5 41.2 94.1 66.3 87.0 82.3 54.6 75.7 29.2

Robust Pn + Co [16] 71.5 97.0 89.8 84.7 87.7 94.8 87.4 81.9 88.9 78.9 93.6 89.0 62.6 42.1 94.6 66.8 87.5 82.5 51.9 76.5 28.8
Ours 75.4 98.1 88.7 86.1 86.2 96.3 87.5 85.0 93.9 79.1 93.7 90.0 64.2 55.9 94.8 81.6 88.2 85.4 53.6 79.1 32.1

Table 2. Recognition rates (%) of different categories in the MSRC dataset. Recognition rate is computed as the recall of each category.

Unary Grid Pn [10] Pn + Co [16] Gaussian [13] Ours
Global 84.1 84.6 84.7 85.1 86.0 87.0

Avg. Precision 79.3 80.5 80.6 81.9 n/a 85.5
Avg. Recall 77.1 77.4 77.7 78.0 78.3 80.7

Table 3. Performance comparison on the MSRC dataset with pixel-
wise global accuracies (%) over all images, precision (%) and recall
(%) averaged over different categories. Except the Gaussian CRF
[13], we show the performance using the code by [16]. Therefore,
exactly the same unary potentials are used. For [13], we cite the
performance in their paper.
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Figure 8. Example errors made by our approach on the MSRC
dataset.

4. Conclusion
We proposed a fully connected CRF which encodes s-

patial relationships among different objects and preserves
object contours at the same time. We also developed an ef-
ficient algorithm to inference the fully connected CRF. The
experiment results demonstrated the efficiency and effec-
tiveness of the proposed CRF. For future work, we would
like to investigate more sophisticated learning of the model
parameters.
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